Facultad de Química
Permanent URI for this community
Browse
Browsing Facultad de Química by browse.metadata.categoriaods "07 Energía asequible y no contaminante"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemConstrucción de dispositivos basados en nanotubos de carbono, semiconductores y perovskitas, evaluación de su aplicación en conversión de energía(2020) Fernández Izquierdo, Leunam; Río Quero, Rodrigo del; Hevia, Samuel; Pontificia Universidad Católica de Chile. Facultad de QuímicaLa captura eficiente de energía solar, para generar dihidrógeno a partir de la fotoelectrólisis del agua o generar corriente empleando celdas solares sigue siendo uno de los mayores desafíos a los que se enfrenta la ciencia hoy en día. Los compuestos fotoactivos actualmente disponibles para ser empleados en la fotólisis y en las celdas solares tienen una baja eficiencia debido principalmente a que utilizan apenas al 4% de la energía solar total incidente en la superficie terrestre. Lo que podría aumentar mediante dispositivos que sean capaces de tener la menor cantidad de perdidas por conducción eléctrica. El objetivo de tesis fue la fabricación de dispositivos nanoestructurados empleando nanotubos de carbono, semiconductores y perovskitas, con buenas propiedades fotoelectrocatalíticas y/o fotovoltaicas. Para fabricar los dispositivos propuestos con propiedades fotoelectrocatalíticas se utilizaron capas delgadas de óxido de aluminio anodizado como plantilla, las cuales permitieron fabricar arreglos ordenados de nanotubos de carbono decorados con hematita y/o dióxido de titanio. Para los dispositivos con propiedades fotovoltaicas se utilizó las junturas p-n para obtener diodos empleando como semiconductor tipo n el óxido de galio y como semiconductor tipo p la perovskita inorgánica de cesio, plomo y bromo. Para caracterizar adecuadamente los materiales involucrados en los dispositivos se utilizaron difracción de Rayos-X, espectroscopia Raman, microscopía electrónica de barrido, microscopía electrónica de transmisión, etc. La evaluación de las propiedades fotoelectrocatalíticas y fotovoltaicas de los dispositivos se realizó en base a medidas de densidad de corriente en función del voltaje.
- ItemElectrodos de pastas de materiales carbonosos aglutinados con líquidos iónicos modificados con nanosompositos de polianilina/óxidos de metales de transición: actividad electro y fotoelectrocatalítica hacia la producción de hidrógeno y reducción de oxígeno(2025) Ibarra Ibarra, José Fernando; Ramírez Jofré, Galo; Pontificia Universidad Católica de Chile. Facultad de Química y FarmaciaDesde el punto de vista energético, el estudio de la reacción de reducción de oxígeno (ORR) y la reacción de evolución de hidrógeno (HER) cobra gran relevancia e interés por su uso en dispositivos generadores de energía limpia, como lo son, por ejemplo, las celdas de combustible. Uno de los catalizadores más eficientes, en términos del sobrepotencial utilizado para llevar a cabo estas reacciones, es el platino, sin embargo, su escases y alto costo de obtención hacen necesaria la búsqueda de nuevos materiales que sean abundantes, baratos y con gran actividad catalítica. En este estudio, se exploró el desarrollo de electrocatalizadores eficientes y de bajo costo para la producción de hidrógeno y reducción oxígeno. Se realizó el diseño y caracterización de electrodos de pasta de carbono aglutinados con el líquido iónico N-Octilpiridinio de hexafluorofosfato modificados con óxidos de metales de transición nanoestructurados (Fe₂O₃, Co₃O₄, CoFe₂O₄) y nanofibras de polianilina, mediante depósito superficial, así como incluidos dentro de la pasta. La caracterización de los materiales, mediante técnicas como FE-SEM, XRD, FT-IR y espectroscopía Raman, confirmó la formación de nanoestructuras con alta cristalinidad y una distribución homogénea en la matriz del electrodo. Los estudios electroquímicos revelaron que la incorporación de estos óxidos y la polianilina mejoran significativamente el rendimiento de los electrodos en distintos medios de reacción. El sistema α-Fe₂O₃/MWCNTs/IL destacó en la ORR en medio ácido, mientras que el CoFe₂O₄/MWCNTs/IL mostró la mayor actividad para la HER en medio neutro. Además, se realizó el estudio de la actividad fotoelectrocatalítica del sistema MWCNTs/IL/PANI-α-Fe₂O₃ para HER, observando un aumento de la corriente bajo irradiación, lo que sugiere su potencial para aplicaciones fotoelectroquímicas. En resumen, este trabajo ofrece una nueva perspectiva sobre el diseño de electrocatalizadores eficientes y rentables para HER y ORR, con aplicaciones potenciales en tecnologías de energía limpia.
- ItemEstudio electro y fotoelectrocatalítico de pastas basadas en materiales carbonosos, líquidos iónicos y porfirinas, actividad frente a la reducción de oxígeno, evolución de hidrógeno y oxidación de ácido gálico.(2020) Gidi Chomalí, Leyla Denisse; Ramírez Jofré, Galo; Aguirre, María Jesús; Pontificia Universidad Católica de Chile. Facultad de QuímicaLas técnicas electroquímicas permiten desarrollar electrodos eficientes frente a reacciones de interés energético y medioambiental con potencial uso en energías renovables, como en el caso de la reacción de reducción de oxígeno (ORR) y la reacción de evolución de hidrógeno (HER). Ambas reacciones pueden participar en sistemas de generación de energía eléctrica limpia y sustentable, otorgando vías catalíticas más favorables. Estas técnicas electroquímicas también permiten estudiar sensores activos frente a algunos analitos de interés en el área de alimentos, como por ejemplo en la detección y cuantificación del antioxidante ácido gálico (GA). Algunos materiales carbonosos tales como el grafito, grafeno y los nanotubos de carbono presentan excelentes características mecánicas y eléctricas, y son interesantes candidatos para mediar reacciones electroquímicas a través de electrodos de pastas carbonosas. Estas pastas aumentan su actividad cuando utilizan líquidos iónicos (IL) como aglutinantes, debido su elevada conductividad iónica. Además, la actividad de estos sistemas puede verse incrementada cuando se emplean porfirinas metálicas, las cuales funcionan como electrocatalizadores eficientes. Su actividad depende en gran parte del metal central y dentro de este contexto, las octaetilporfirinas de cobalto (CoIIOEP) y de hierro (FeIIIOEP), muestran una respuesta electro y fotoelectrocatalítica atractiva hacia diversas reacciones electroquímicas tanto de reducción como de oxidación. En base a estos antecedentes, en este trabajo de tesis se realizó la generación de electrodos fabricados a partir de grafito, grafeno y nanotubos de carbono, empleando al IL hexafluorofosfato de Noctilpiridinio como aglutinante y catalizador, y se realizó la modificación de las superficies electródicas con CoIIOEP, FeIIIOEP y mezclas de ambos complejos. Los electrodos diseñados fueron estudiados mediante técnicas de caracterización fisicoquímicas, para obtener información detallada acerca de su estructura, composición y morfología. Luego, se estudió la respuesta electroquímica y fotoelectrocatalítica de los sistemas. Dentro de las combinaciones, se encontraron materiales con gran actividad hacia la electrocatálisis de la ORR y de la HER. La HER además muestra una actividad fotoelectrocatalítica importante, mientras que la ORR no mejora su respuesta en presencia de luz. Por último, se realizó la evaluación de los sistemas como sensores amperométricos en la detección y cuantificación GA, estableciéndose los parámetros electroanalíticos correspondientes.Las técnicas electroquímicas permiten desarrollar electrodos eficientes frente a reacciones de interés energético y medioambiental con potencial uso en energías renovables, como en el caso de la reacción de reducción de oxígeno (ORR) y la reacción de evolución de hidrógeno (HER). Ambas reacciones pueden participar en sistemas de generación de energía eléctrica limpia y sustentable, otorgando vías catalíticas más favorables. Estas técnicas electroquímicas también permiten estudiar sensores activos frente a algunos analitos de interés en el área de alimentos, como por ejemplo en la detección y cuantificación del antioxidante ácido gálico (GA). Algunos materiales carbonosos tales como el grafito, grafeno y los nanotubos de carbono presentan excelentes características mecánicas y eléctricas, y son interesantes candidatos para mediar reacciones electroquímicas a través de electrodos de pastas carbonosas. Estas pastas aumentan su actividad cuando utilizan líquidos iónicos (IL) como aglutinantes, debido su elevada conductividad iónica. Además, la actividad de estos sistemas puede verse incrementada cuando se emplean porfirinas metálicas, las cuales funcionan como electrocatalizadores eficientes. Su actividad depende en gran parte del metal central y dentro de este contexto, las octaetilporfirinas de cobalto (CoIIOEP) y de hierro (FeIIIOEP), muestran una respuesta electro y fotoelectrocatalítica atractiva hacia diversas reacciones electroquímicas tanto de reducción como de oxidación. En base a estos antecedentes, en este trabajo de tesis se realizó la generación de electrodos fabricados a partir de grafito, grafeno y nanotubos de carbono, empleando al IL hexafluorofosfato de Noctilpiridinio como aglutinante y catalizador, y se realizó la modificación de las superficies electródicas con CoIIOEP, FeIIIOEP y mezclas de ambos complejos. Los electrodos diseñados fueron estudiados mediante técnicas de caracterización fisicoquímicas, para obtener información detallada acerca de su estructura, composición y morfología. Luego, se estudió la respuesta electroquímica y fotoelectrocatalítica de los sistemas. Dentro de las combinaciones, se encontraron materiales con gran actividad hacia la electrocatálisis de la ORR y de la HER. La HER además muestra una actividad fotoelectrocatalítica importante, mientras que la ORR no mejora su respuesta en presencia de luz. Por último, se realizó la evaluación de los sistemas como sensores amperométricos en la detección y cuantificación GA, estableciéndose los parámetros electroanalíticos correspondientes.
- ItemNovel pillar-layered metal organic frameworks based on pyrazole-carboxylate linkers for CO2 adsorption(2023) Lancheros Sánchez, Andrés Fernando; Schott Verdugo, Eduardo; Pontificia Universidad Católica de Chile. Facultad de Química y FarmaciaWith an increasing global population and energy requirement, the concentration of greenhouse gases, especially CO2, grows rapidly in the atmosphere. One of the solutions to mitigate this problem is to develop materials that can effectively capture and store CO2. The conventional method relies on using amine solvents to bind to CO2 chemically, but it is still not widely accepted because of the price of its regeneration. Porous solid materials such as Metal-Organic Frameworks (MOFs) have been suggested as CO2 adsorbents due to their-well defined molecular scale porosity, crystallinity, synthetic tunability, and high CO2 uptake capacity and selectivity. This Chemistry Ph.D. project first synthesized and characterized three novel carboxylate-pyrazole linkers (Ap, Bp, and Cp). Those linkers allowed the synthesis of novel MOFs using Zn(II)/Cu(II) metal nodes and 4,4’-bipyridine/DABCO pillaring linkers. Five MOFs were obtained, three from the Ap linker, one from Bp, and one from Cp. The carboxylate groups and pyridyl nitrogens are engaged in coordination bond formation with the metal node that propagates in generating 3D porous structures, and the pyrazole nitrogens remain free to interact with CO2. All the materials have shown excellent structural stability and crystallinity. The CO2 uptake was between 3.4-7.20% wt% at 273 K and 75 kPa. For Ap MOFs, changing the metal node from Zn(II) to Cu (II) and replacing the pillaring linker from 4,4’-bipyridine to DABCO makes it possible to increase CO2 adsorption. The isosteric enthalpy of adsorption (Hads) of CO2 adsorption for all of them was between 23-40 kJ/mol, making it more cost-effective for the MOF’s regeneration after CO2 storage. All five MOFs are good candidates for CO2 adsorption because of their stability, capture capabilities, and energy required for CO2 adsorption and regeneration.
- ItemSíntesis de compositos de nanocelulosa y nanopartículas de LiFePO4 para su aplicación como material catódico de baterías de ion litio(2023) Kroff Cortez, Macarena Alicia; Río Quero, Rodrigo del; O'Shea, James; Pontificia Universidad Católica de Chile. Escuela de QuímicaLa demanda por vehículos eléctricos ha aumentado debido principalmente a las limitaciones de emisión de CO2. En consecuencia, se ha incrementado la demanda de baterías de ion litio también, ya que es la tecnología que sustenta los vehículos eléctricos. En este ámbito, el cátodo de fosfato de hierro y litio (LFP) es un candidato prometedor para las nuevas generaciones de estas baterías debido a su bajo costo, estabilidad térmica y compatibilidad ambiental. Sin embargo, posee poca conductividad eléctrica y una lenta difusión del ion litio, lo que disminuye su capacidad en la práctica y limita su uso. Debido a esto, distintas metodologías han sido propuestas para mejorar el desempeño de LFP, donde la reducción del tamaño de partícula y la formación de compositos con materiales conductores son los más utilizados. En este proyecto se plantea realizar la síntesis hidrotermal asistida por microondas de nanopartículas de LFP en presencia de nanocelulosa, dado que esta puede actuar como agente reductor del hierro y ser la fuente de carbono para la realización posterior del composito LFP/C. Los parámetros determinantes de la síntesis hidrotermal planeada son el pH con el agente reductor externo añadido, como también la temperatura y tiempo de reacción. En la condición de síntesis propuesta (150°C por 30 min) añadir nanocelulosa (NC) de cualquiera de los tipos ayuda a disminuir los tamaños de partícula promedios observados, además de mejorar las intensidades de la cara cristalina responsable de la difusión del litio (020). Sin embargo al realizar un ciclado del cátodo por 10 ciclos a una velocidad baja, comienzan a aparecer otras especies de hierro +3 o 0, lo que representa una baja en el desempeño del LFP. Cuando se estudia el recubrimiento de la partícula de LFP con el uso de la nanocelulosa fibrilar (NCF) se observan pocos recubrimientos con porcentajes cercanos a los 12,6% o menores. El composito con 22,8% de carbón es el que presenta el mayor recubrimiento de las partículas de LFP y por ende, mejor respuesta electroquímica. Sin embargo, se continúan observando partículas de tamaño y recubrimiento heterogéneo. Por lo que, el mejoramiento de estos parámetros ayudaría a obtener capacidades cercanas a la teórica. Utilizando la síntesis hidrotermal asistida por microondas es posible obtener un composito LFP/C con una mejora en el desempeño electroquímica del cátodo conseguido a diferencia del obtenido sin utilizar NC en su síntesis, e incluso al compuesto LFP-comercial. Por lo que la síntesis propuesta tiene un potencial uso como realización de este cátodo para futuras generaciones de cátodos para baterías de ion lito.
- ItemSíntesis de nanocatalizadores pirolizados tipo M-N-C (M= Fe o Co) usando nanopartículas metálicas como molde, para la reacción de reducción de oxígeno(2020) Zúñiga Loyola, César Antonio; Recio Cortés, Francisco Javier; Zagal Moya, José Heráclito; Pontificia Universidad Católica de Chile. Facultad de QuímicaDebido al incremento en la demanda energética junto con la producción medioambiental, se requieren de alternativas para el futuro suministro de energía en el planeta. Una alternativa es el uso de celdas combustibles que permiten la obtención de energía eléctrica desde la energía química mediante la oxidación de hidrógeno en el ánodo y la reducción de oxígeno en el cátodo. Sin embargo, debido a la lenta cinética en la reducción de oxígeno se requieren de catalizadores para acelerar este proceso. El platino (Pt) es reconocido como el catalizador más activo en la reacción de reducción de oxígeno (RRO), pero su escasez y elevado costo comercial ha impedido su escalamiento en celdas combustibles. Una posible solución, es el uso de los catalizadores pirolizados del tipo metal, nitrógeno y carbono (M-N-C) a base de metales no nobles que son activos para la RRO en medio ácido y básico. Pese a esto, sus propiedades catalíticas deben ser mejoradas para reemplazar al Pt en el cátodo de celdas combustibles. El proceso de síntesis de catalizadores en esta tesis se realizó utilizando nanopartículas de MFe2O4 (M: Fe o Co) como molde, polianilina (PANI) como fuente de C-N y sales de Fe(III) como recurso M, que fueron pirolizados a 800, 900 y 1000ºC (en tres pasos: 1º pirólisis en nitrógeno, lavado ácido y 2º pirólisis en amoniaco gaseoso). Los resultados indicaron que modular la relación en peso de nanopartículas: PANI en 1:0,5 incrementa tanto el área superficial aparente (S-BET), así como también, la actividad catalítica en la RRO evaluada en función del logjk a un potencial constante de electrodo de 0,65V vs RHE. Las correlaciones realizadas, muestran que del aumento progresivo en la actividad catalítica en la RRO se asocia a un: (i) incremento en la grafitización de la matriz carbonosa, (ii) aumento en la concentración relativa de sitios Fe-Nv y N-Grafíticos y (iii) desplazamiento del potencial formal a valores más positivos, observado por espectroscopía RAMAN, XPS y curvas de polarización respectivamente. En este último caso, la presencia de sitios de Fe(II) fue crucial tanto en medio ácido como en medio básico, demostrando que: (i) el mecanismo de transferencia electrónica a pH 1 y 13 es de esfera interna. (ii) Existe un cambio de mecanismo de reacción a bajo y alto sobrepotencial, debido a que a bajo sobrepotencial la concentración de Fe(II) es dependiente del potencial aplicado, mientras que a alto sobrepotencial la presencia de Fe(II) es independiente del potencial aplicado. (iii) El potencial formal de Fe(III)/(II) puede ser considerado como un índice de reactividad en ambos medios para este tipo de catalizadores similar a lo observado en catalizadores no pirolizados del tipo MN4.
- ItemSíntesis de nanohilos de ZnO, su aplicación en procesos fotoelectroquímicos(2020) Castillo Rodríguez, Judith; Río Quero, Rodrigo del; Hevia, Samuel; Pontificia Universidad Católica de Chile. Facultad de QuímicaEn la actualidad uno de los principales retos que presenta la sociedad es el desarrollo de vías alternativas de generación de energía. Dos de las alternativas más exploradas en la utilización de fuentes renovables de energía, son la construcción de celdas solares sensibilizadas con colorantes y la generación de hidrógeno a través de los procesos de fotoelectrólisis del agua. Esta tesis doctoral se centra en la obtención de nanohilos de ZnO (ZnONHs), ZnONHs modificados, su completa caracterización y la evaluación de sus propiedades fotoelectroquímicas, específicamente para la generación de hidrógeno mediante water splitting y la construcción de celdas solares sensibilizadas con colorantes. Para la obtención de los depósitos de ZnONHs sobre FTO, se utilizó la reducción catódica precedida por la formación de una capa semilla en la superficie del electrodo mediante Spin-Coating. La modificación estructural mediante el dopaje con plata de los nanohilos se hizo mediante la utilización de voltametría cíclica en presencia de AgNO3 con una ventana de potencial entre 0.5 a -1 V a una velocidad de barrido de 20 mV/s. Por otra parte, la modificación superficial de los ZnONHs utilizando nanopartículas de plata (AgNPs) se llevó a cabo mediante cuatro métodos diferentes: SILAR, fotodepósito, depósito electroquímico y por último electroforesis de AgNPs previamente formadas. Los materiales obtenidos fueron caracterizados morfológica, estructural, óptica y superficialmente mediante Microscopía Electrónica de Barrido (SEM), Difracción de Rayos X (DRX), Reflectancia Difusa (DRS) y Espectroscopia de Fotoelectrones Emitidos por Rayos X (XPS). Mediante la caracterización electroquímica se obtuvo un potencial de banda plana de 0.4 V y ND de 1 · 1020 cm-3. Se obtuvo una eficiencia de 0.02% en la construcción de las celdas solares sensibilizadas con colorantes.En la actualidad uno de los principales retos que presenta la sociedad es el desarrollo de vías alternativas de generación de energía. Dos de las alternativas más exploradas en la utilización de fuentes renovables de energía, son la construcción de celdas solares sensibilizadas con colorantes y la generación de hidrógeno a través de los procesos de fotoelectrólisis del agua. Esta tesis doctoral se centra en la obtención de nanohilos de ZnO (ZnONHs), ZnONHs modificados, su completa caracterización y la evaluación de sus propiedades fotoelectroquímicas, específicamente para la generación de hidrógeno mediante water splitting y la construcción de celdas solares sensibilizadas con colorantes. Para la obtención de los depósitos de ZnONHs sobre FTO, se utilizó la reducción catódica precedida por la formación de una capa semilla en la superficie del electrodo mediante Spin-Coating. La modificación estructural mediante el dopaje con plata de los nanohilos se hizo mediante la utilización de voltametría cíclica en presencia de AgNO3 con una ventana de potencial entre 0.5 a -1 V a una velocidad de barrido de 20 mV/s. Por otra parte, la modificación superficial de los ZnONHs utilizando nanopartículas de plata (AgNPs) se llevó a cabo mediante cuatro métodos diferentes: SILAR, fotodepósito, depósito electroquímico y por último electroforesis de AgNPs previamente formadas. Los materiales obtenidos fueron caracterizados morfológica, estructural, óptica y superficialmente mediante Microscopía Electrónica de Barrido (SEM), Difracción de Rayos X (DRX), Reflectancia Difusa (DRS) y Espectroscopia de Fotoelectrones Emitidos por Rayos X (XPS). Mediante la caracterización electroquímica se obtuvo un potencial de banda plana de 0.4 V y ND de 1 · 1020 cm-3. Se obtuvo una eficiencia de 0.02% en la construcción de las celdas solares sensibilizadas con colorantes.
- ItemSíntesis y caracterización de materiales porosos derivados del MOF-808 y UiO-67-NH2 con aplicación en catálisis heterogénea sobre derivados de la biomasa.(2025) Roa Gómez, Vanesa Belen; Schott Verdugo, Eduardo ; Pontificia Universidad Católica de Chile. Facultad de Química y FarmaciaResulta innegable que la humanidad ha desarrollado una marcada dependencia de los combustibles, principalmente el petróleo y los biocombustibles, como fuentes primarias para satisfacer nuestras necesidades energéticas. Este aumento progresivo en su utilización ha implicado el agotamiento acelerado de recursos naturales en conjunto de los efectos de contaminación ambiental. De este modo es prometedor el desarrollo de nuevas energías renovables y de combustibles alternativos a partir de derivados de la biomasa lignocelulósica, la cual mediante procesos de pretratamiento y fraccionamiento permite la separación de sus componentes para la formación de moléculas plataforma que son el inicio para la obtención de productos químicos de valor agregado. Algunas moléculas plataforma son el benzaldehído y catecol, los cuales permiten la obtención de productos como acetales y benzoquinonas, respectivamente, en presencia de un catalizador ácido, como ácidos minerales, siendo estos corrosivos y también perjudiciales para el medio ambiente. Para dar solución a esta problemática, ha sido relevante el estudio y desarrollo de catalizadores heterogéneos a partir de materiales porosos. Entre este tipo de catalizadores se encuentran las mallas metal-orgánicas o también conocidos como MOFs (del inglés Metal Organic Frameworks). Los MOFs son una subfamilia de los polímeros de coordinación (PC) que están formados por la unión de un clúster metálico y ligandos orgánicos. Los MOFs son materiales prometedores que presentan propiedades como alta cristalinidad, gran volumen de poro, gran área específica y gran tamaño de poros. Además, son materiales que pueden ser modificados estructuralmente lo cual permite ampliar las aplicaciones de estos materiales. Esta investigación se basa principalmente en la síntesis y caracterización de MOF808-M (siendo M: Zr(IV), Hf(IV) y Ce(IV)) y su posterior modificación post-sintética (PSM), adicionando sitios ácidos de Brønsted para dar origen a MOF-808-SO4-M. En segundo lugar, se propone la síntesis y caracterización de UiO-67-NH2-M y su PSM en presencia de 1,3-propanosultona para la formación de un catalizador con sitios ácidos Brønsted denominado, UiO-67-NH-SO3H-M. Estas estructuras serán caracterizadas estructuralmente mediante difracción de rayos X de polvo (PXDR), adsorción y desorción de nitrógeno, valoraciones potenciométricas ácido base, espectroscopía infrarroja (FT-IR) y mediante análisis termogravimétrico (TGA). Finalmente serán aplicados en pruebas catalíticas como acetalización de benzaldehído y la oxidación de catecol considerando el uso de reactivos comerciales.
