Browsing by Author "Zolezzi, Juan M."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemAge Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease(2015) Inestrosa Cantín, Nibaldo; Rios, Juvenal A.; Cisternas, Pedro; Tapia Rojas, Cheril Cecilia; Rivera, Daniela S.; Braidy, Nady; Zolezzi, Juan M.; Godoy, Juan A.; Carvajal Cachaña, Francisco Javier; Ardiles, Alvaro O.
- ItemAndrographolide Reduces Neuroinflammation and Oxidative Stress in Aged Octodon degus(SPRINGER, 2020) Lindsay, Carolina B.; Zolezzi, Juan M.; Rivera, Daniela S.; Cisternas, Pedro; Bozinovic, Francisco; Inestrosa, Nibaldo C.Alzheimer's disease (AD) is a devastating neurodegenerative disorder in which superior brain functions, such as memory and cognition, are impaired. Currently, no effective treatment is available for AD. Although andrographolide (ANDRO), a compound extracted from the herb Andrographis paniculata, has shown interesting effects in models of several diseases, including AD, its effects on other molecular changes observed in AD, such as neuroinflammation and oxidative stress, have not yet been studied. To evaluate the impact of ANDRO-based intervention on the levels of amyloid-beta (A beta) and neuroinflammatory and oxidative stress markers in the brains of aged Octodon degus, a Chilean rodent, fifty-six-month-old O. degus were treated intraperitoneally with 2 or 4 mg/kg ANDRO. Vehicle-injected and 12-month-old O. degus were used as positive controls. Then, the protein levels of selected markers were assessed via immunohistochemistry and immunoblotting. ANDRO significantly reduced the total A beta burden as well as astrogliosis and interleukin-6 levels. Moreover, ANDRO significantly reduced the levels of 4-hydroxynonenal and N-tyrosine adducts, suggesting a relevant reduction in oxidative stress within aged O. degus brain. Considering that O. degus has been proposed as a potential "natural" model for sporadic AD due to the development of neuropathological markers that resemble this pathology, our results suggest that ANDRO should be further studied to establish its potential as a therapeutic drug for AD.
- ItemEmerging role of Metformin in Alzheimer's disease: A translational view(2024) Rios, Juvenal A.; Borquez, Juan Carlos; Godoy, Juan A.; Zolezzi, Juan M.; Furrianca, Maria Cristina; Inestrosa, Nibaldo C.Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
- ItemInflammation context in Alzheimer’s disease, a relationship intricate to define(2022) Novoa Fernández, Catalina; Salazar Torres, Paulina Isabel; Cisternas, Pedro; Gherardelli Brooks, Camila; Vera Salazar, Roberto; Zolezzi, Juan M.; Inestrosa Cantín, NibaldoAlzheimer’s disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
- ItemNew Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus : Unraveling Amyloid-beta Peptide Aggregation and Age-Related Amyloid Pathology(2018) Cisternas, Pedro; Zolezzi, Juan M.; Lindsay, Carolina; Rivera, Daniela S.; Martinez, Alexis; Bozinovic Kuscevic, Francisco; Inestrosa Cantín, Nibaldo
- ItemPeroxisome Proliferator-Activated Receptor (PPAR) γ and PPARα Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders?(2013) Zolezzi, Juan M.; Silva-Alvarez, Carmen; Ordenes, Daniela; Godoy, Juan A.; Carvajal, Francisco J.; Santos, Manuel J.; Inestrosa, Nibaldo C.Recent studies showed that the activation of the retinoid X receptor, which dimerizes with peroxisome proliferator-activated receptors (PPARs), leads to an enhanced clearance of A beta from the brain of transgenic mice model of Alzheimer's disease (AD), because an increased expression of apolipoprotein E and it main transporters. However, the effects observed must involve additional underlying mechanisms that have not been yet explored. Several studies conducted in our laboratory suggest that part of the effects observed for the PPARs agonist might involves mitochondrial function and, particularly, mitochondrial dynamics. In the present study we assessed the effects of oxidative stress challenge on mitochondrial morphology and mitochondrial dynamics-related proteins in hippocampal neurons. Using immunofluorescence, we evaluated the PPAR gamma co-activator 1 alpha (PGC-1 alpha), dynamin related protein 1 (DRP1), mitochondrial fission protein 1 (FIS1), and mitochondrial length, in order to determine if PPARs agonist pre-treatment is able to protect mitochondrial population from hippocampal neurons through modulation of the mitochondrial fusion-fission events. Our results suggest that both a PPAR gamma agonist (ciglitazone) and a PPAR alpha agonist (WY 14.643) are able to protect neurons by modulating mitochondrial fusion and fission, leading to a better response of neurons to oxidative stress, suggesting that a PPAR based therapy could acts simultaneously in different cellular components. Additionally, our results suggest that PGC-1 alpha and mitochondrial dynamics should be further studied in future therapy research oriented to ameliorate neurodegenerative disorders, such as AD.
- ItemPPARs in the central nervous system: roles in neurodegeneration and neuroinflammation(2017) Zolezzi, Juan M.; Santos Alcántara, Manuel; Bastías Candia, Sussy; Pinto, Claudio; Godoy, Juan A.; Inestrosa Cantín, Nibaldo
- ItemTetrahydrohyperforin Induces Mitochondrial Dynamics and Prevents Mitochondrial Ca2+ Overload after Aβ and Aβ-AChE Complex Challenge in Rat Hippocampal Neurons(2013) Zolezzi, Juan M.; Carvajal, Francisco J.; Rios, Juvenal A.; Ordenes, Daniela; Silva-Alvarez, C.; Godoy, Juan A.; Inestrosa, Nibaldo C.St. John's wort has been the subject of studies focused on its therapeutic properties against several diseases, including Alzheimer's disease (AD). Amyloid beta-peptide (A beta), a critical peptide in AD, has been linked to the mitochondrial dysfunction often observed in this disease. Despite many efforts to prevent A beta levels from increasing in AD, less has been done regarding the mitochondrial component. Therefore, we studied the effects of tetrahydrohyperforin (THH) on mitochondrial dysfunction of hippocampal neurons, challenged with A beta oligomers (A beta o) and A beta o-AChE complexes. We show that THH prevents mitochondrial calcium overload and induces the modulation of fusion-fission events, arresting mitochondrial dysfunction. Moreover, our results suggest that the modulation of mitochondrial dynamics probably occurs through a peroxisome proliferator-activated receptor gamma co-activator 1 alpha-mediated mechanism, inducing mitochondrial fusion-fission protein expression. Our results offer further explanation for the effects observed for THH and the beneficial effects of this ethno-botanical drug in AD.
- ItemWnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease(WILEY, 2019) Cisternas, Pedro; Zolezzi, Juan M.; Martinez, Milka; Torres, Viviana I.; Wong, Guang William; Inestrosa, Nibaldo C.Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose-6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP-activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt-mediated improvements in neuronal glucose metabolism.
- ItemWnt/TLR Dialog in Neuroinflammation, Relevance in Alzheimer's Disease(2017) Zolezzi, Juan M.; Inestrosa, Nibaldo C.The innate immune system (IIS) represents the first line of defense against exogenous and endogenous harmful stimuli. Different types of pathogens and diverse molecules can activate the IIS via a ligand-receptor mechanism. Cytokine release, recruitment of immunocompetent cells, and inflammation constitute the initial steps in an IIS-mediated response. While balanced IIS activity can resolve a harmful event, an altered response, such as deficient or persistent IIS activity, will have a critical effect on organism homeostasis. In this regard, chronic IIS activation has been associated with a wide range of diseases, including chronic inflammatory disorders (inflammatory bowel disease, arthritis, chronic obstructive pulmonary disease, among others), cancer and, more recently, neurodegenerative disorders. The relevance of the immune response, particularly inflammation, in the context of neurodegeneration has motivated rigorous research focused on unveiling the mechanisms underlying this response. Knowledge regarding the molecular hallmarks of the innate immune response and understanding signaling pathway cross talk are critical for developing new therapeutic strategies aimed at modulating the neuroinflammatory response within the brain. In the present review, we discuss the IIS in the central nervous system, particularly the cross talk between the toll-like receptor-signaling cascade and the wingless-related MMTV integration site (Wnt) signaling pathway and its relevance in neurodegenerative disorders such as Alzheimer's disease.