Browsing by Author "Zoccali, M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemComparing bulge RR Lyrae stars with bulge giants: Insight from 3D kinematics(2024) Carvajal, J. Olivares; Zoccali, M.; De Leo, M.; Ramos, R. Contreras; Quezada, C.; Rojas-Arriagada, A.; Valenti, E.; Albarracin, R.; Navarro, A. ValenzuelaContext. The structure and kinematics of the old component of the Galactic bulge are still a matter of debate. It is clear that the bulk of the bulge as traced by red clump stars includes two main components, which are usually identified as the metal-rich and metal-poor components. They have different shapes, kinematics, mean metallicities, and alpha-element abundances. It is our current understanding that they are associated with a bar and a spheroid, respectively. On the other hand, RR Lyrae variables trace the oldest population of the bulge. While it would be natural to think that they follow the structure and kinematics of the metal-poor component, the data analysed in the literature show conflicting results. Aims. We aim to derive a rotation curve for bulge RR Lyrae stars in order to determine that the old component traced by these stars is distinct from the two main components observed in the Galactic bulge. Methods. This paper combines APOGEE-2S spectra with OGLE-IV light curves, near-infrared photometry, and proper motions from the VISTA Variables in the V & iacute;a L & aacute;ctea survey for 4193 RR Lyrae stars. Six-dimensional phase-space coordinates were used to calculate orbits within an updated Galactic potential and to isolate the stars. Results. The stars that stay confined within the bulge represent 57% of our sample. Our results show that bulge RR Lyrae variables rotate more slowly than metal-rich red clump stars and have a lower velocity dispersion. Their kinematics is compatible with them being the low-metallicity tail of the metal-poor component. We confirm that a rather large fraction of halo and thick disc RR Lyrae stars pass by the bulge within their orbits, increasing the velocity dispersion. A proper orbital analysis is therefore critical to isolate bona fide bulge variables. Finally, bulge RR Lyrae seem to trace a spheroidal component, although the current data do now allow us to reach a firm conclusion about the spatial distribution.
- ItemDetailed chemical abundances of distant RR Lyrae stars in the Virgo Stellar Stream(2016) Duffau, S.; Sbordone, L.; Vivas, A. K.; Hansen, C. J.; Zoccali, M.; Catelan, Márcio; Minniti, D.; Grebel, E. K.We present the first detailed chemical abundances for distant RR Lyrae stars members of the Virgo Stellar Stream (VSS), derived from X- Shooter medium-resolution spectra. Sixteen elements from carbon to barium have been measured in six VSS RR Lyrae stars, sampling all main nucleosynthetic channels. For the first time we will be able to compare in detail the chemical evolution of the VSS progenitor with those of Local Group dwarf spheroidal galaxies (LG dSph) as well as the one of the smooth halo....
- ItemReinforcing the link between the double red clump and the X-shaped bulge of the Milky Way(2015) Gonzalez, O. A.; Zoccali, M.; Debattista, V. P.; Alonso-Garcia, J.; Valenti, E.; Minniti, D.The finding of a double red clump in the luminosity function of the Milky Way bulge has been interpreted as evidence for an X-shaped structure. Recently, an alternative explanation has been suggested, where the double red clump is an effect of multiple stellar populations in a classical spheroid. In this Letter we provide an observational assessment of this scenario and show that it is not consistent with the behaviour of the red clump across different lines of sight, particularly at high distances from the Galactic plane. Instead, we confirm that the shape of the red clump magnitude distribution closely follows the distance distribution expected for an X-shaped bulge at critical Galactic latitudes. We also emphasize some key observational properties of the bulge red clump that should not be neglected in the search for alternative scenarios.
- ItemThe metal content of bulge field stars from FLAMES-GIRAFFE spectra -: I.: Stellar parameters and iron abundances(2008) Zoccali, M.; Hill, V.; Lecureur, A.; Barbuy, B.; Renzini, A.; Minniti, D.; Gomez, A.; Ortolani, S.Aims. We determine the iron distribution function (IDF) for bulge field stars, in three different fields along the Galactic minor axis and at latitudes b = -4 degrees, b = -6 degrees, and b = -12 degrees. A fourth field including NGC 6553 is also included in the discussion.
- ItemUsing classical Cepheids to study the far side of the Milky Way disk II. The spiral structure in the first and fourth Galactic quadrants(2021) Minniti, J. H.; Zoccali, M.; Rojas-Arriagada, A.; Minniti, D.; Sbordone, L.; Ramos, R. Contreras; Braga, V. F.; Catelan, M.; Duffau, S.; Gieren, W.; Marconi, M.; Valcarce, A. A. R.In an effort to improve our understanding of the spiral arm structure of the Milky Way, we use classical Cepheids (CCs) to increase the number of young tracers on the far side of the Galactic disk with accurately determined distances. We used a sample of 30 CCs that were discovered using near-infrared photometry from the VISTA Variables in the Via Lactea survey (VVV) and classified based on their radial velocities and metallicities. We combined them with another 20 CCs from the literature for which VVV photometry is available. We used the compiled sample of CCs with homogeneously computed distances based on VVV infrared photometry as a proof of concept to trace the spiral structure in the poorly explored far side of the disk. Although the use of CCs has some caveats, these variables are currently the only available young tracers on the far side of the disk for which a numerous sample with accurate distances can be obtained. Therefore, a larger sample could allow us to make a significant step forward in our understanding of the Milky Way disk as a whole. We present preliminary evidence that CCs favor the following: a spiral arm model with two main arms (Perseus and Scutum-Centaurus) that branch out into four arms at Galactocentric distances, R-GC >= 5-6 kpc; the extension of the Scutum-Centaurus arm behind the Galactic center; and a possible connection between the Perseus arm and the Norma tangency direction. The current sample of CCs on the far side of the Galaxy are in the mid-plane, which argues against the presence of a severely warped disk at small Galactocentric distances (R-GC <= 12 kpc) in the studied area. The discovery and characterization of CCs at near-infrared wavelengths appears to be a promising tool to complement studies based on other spiral arm tracers and extend them to the far side of our Galaxy.