• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Zhongwei"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Tractable Bayes of skew-elliptical link models for correlated binary data
    (2023) Zhang, Zhongwei; Arellano-Valle, Reinaldo B.; Genton, Marc G.; Huser, Raphael
    Correlated binary response data with covariates are ubiquitous in longitudinal or spatial studies. Among the existing statistical models, the most well-known one for this type of data is the multivariate probit model, which uses a Gaussian link to model dependence at the latent level. However, a symmetric link may not be appropriate if the data are highly imbalanced. Here, we propose a multivariate skew-elliptical link model for correlated binary responses, which includes the multivariate probit model as a special case. Furthermore, we perform Bayesian inference for this new model and prove that the regression coefficients have a closed-form unified skew-elliptical posterior with an elliptical prior. The new methodology is illustrated by an application to COVID-19 data from three different counties of the state of California, USA. By jointly modeling extreme spikes in weekly new cases, our results show that the spatial dependence cannot be neglected. Furthermore, the results also show that the skewed latent structure of our proposed model improves the flexibility of the multivariate probit model and provides a better fit to our highly imbalanced dataset.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback