Browsing by Author "Zhang, Zhi-Xiang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemIdentifying potential distributions of 10 invasive alien trees: implications for conservation management of protected areas(2018) Wan, Ji-Zhong; Zhang, Zhi-Xiang; Wang, Chun-JingTree invasion has the potential to negatively affect biodiversity and ecosystems, with invasive alien trees (IATs) expanding widely in protected areas (PAs) across different habitats. Thus, the effectiveness of PAs might be reduced. Investigation of the distributions of IAT is urgently required to improve the effective conservation management of PAs. We projected the potential distributions of 10 IATs, which included Acacia mearnsii, Ardisia elliptica, Cecropia peltata, Cinchona pubescens, Leucaena leucocephala, Melaleuca quinquenervia, Miconia calvescens, Morella faya, Prosopis glandulosa, and Spathodea campanulata, that have a serious influence on global biodiversity and assessed the distribution possibilities of these IATs in PAs based on the PA categories of the International Union for Conservation of Nature (IUCN). The overall potential distributions of these 10 IATs included Latin America, central and southern Africa, southeastern Asia, eastern Australia and New Zealand, and western Europe. Annual mean temperature, temperature seasonality, annual precipitation, and soil bulk density were found to be important environmental variables for the potential distributions of these IATs. Overall, A. mearnsii, A. elliptica, C. peltata, L. leucocephala, M. quinquenervia, M. calvescens, and S. campanulata were distributed mainly in the IUCN PA categories of national parks and PAs with sustainable use of natural resources. We proposed the following for conservation management of PAs: (1) completion of species inventories for PAs, (2) better understanding of factors driving invasions in PAs, (3) assessment of the efficiency of management within particular PAs, and (4) evaluation of changes in trends regarding plant invasions in PAs under climate change conditions.
- ItemVulnerability of global forest ecoregions to future climate change(2019) Wang, Chun-Jing; Zhang, Zhi-Xiang; Wan, Ji-ZhongThe vulnerability of global forest ecoregions to future climate change represents a major threat to biodiversity and ecosystems worldwide. Therefore, it is important to investigate this vulnerability to improve the global conservation management network for biodiversity and ecosystems. We used speciesearea relationship coupled with correlative distribution modelling to conduct a global vulnerability assessment on 387 forest ecoregions under future climate change across different (1) biomes, (2) biogeographical realms and (3) conservation statuses. We found that 8.8% of global forest ecoregions were highly vulnerable in a low-greenhouse-gas-concentration scenario, and 32.6% of the global forest ecoregions were highly vulnerable in the high-greenhouse-gas-concentration scenario. Furthermore, the overall vulnerability of forest ecoregions was significantly greater for the high-rather than the low-greenhouse-gas-concentration scenario. In particular, critical or endangered forest ecoregions of Temperate Broadleaf and Mixed Forests, Temperate Conifer Forests, Tropical and Subtropical Dry Broadleaf Forests and Tropical and Subtropical Moist Broadleaf Forests were highly vulnerable in Nearctic, Neotropic and Palearctic realms. Furthermore, relatively stable and intact Tropical and Subtropical Moist Broadleaf Forests may be threatened in Neotropic and Afrotropic realms due to their climate change vulnerability. Hence, due to increasing greenhouse gas concentrations, future climate change must be incorporated into forest ecoregion conservation management to improve the effectiveness of global conservation network systems for biodiversity and ecosystems. (c) 2019 The Authors. Published by Elsevier B.V.