Browsing by Author "Zambrano, Yadira"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCuAu bimetallic plasmonic-enhanced catalysts supported on alginate biohydrogels(2022) Ramirez, Oscar; Bonardd, Sebastian; Saldias, Cesar; Zambrano, Yadira; Diaz Diaz, David; Leiva, AngelWe describe the synthesis, characterization and catalytic properties of a series of hybrid materials composed of inorganic plasmonic mono-and bimetallic nanoparticles supported on organic bio-based hydrogel beads. The bimetallic materials showed a localized surface plasmon resonance in the visible region, with a maximum light absorption correlated to the metal composition of the alloyed systems. Thermogravimetric analysis revealed a total water content near to 90 % w/w, which was in good agreement with the free-volume calculated from mu CT scan reconstruction of lyophilized samples. Catalytic essays for the reduction of 4-nitrophenol demonstrated that alginate beads loaded with bimetallic nanoparticles exhibit a 5.4-fold higher apparent kinetic constant (k(app)) than its monometallic counterparts. Additionally, taking advantage of the plasmonic properties given by the nanoparticles is that the materials were tested as photocatalysts. The activity of the catalysts was enhanced by near 2.2 times higher in comparison with its performance in dark conditions.
- ItemUnderstanding the physical breakdown and catechin bioaccessibility of third generation extruded snacks enriched with catechin using the human gastric simulator(2024) Zambrano, Yadira; Bornhorst, Gail M.; Bouchon, PedroThe nutritional quality of third-generation snacks prepared from rice flour by extrusion can be improved by the addition of polyphenols such as catechins, which are known to be more stable at high temperatures. However, the extrusion parameters can impact the breakdown and release of bioactive compounds and decrease the catechin bioaccessibility. Accordingly, this study investigated the impact of different extrusion parameters, including different extrusion temperatures (110, 135, and 150 degrees C) and moisture content prior to extrusion (27 and 31%), on the breakdown and bioaccessibility of catechin-enriched snacks during in vitro dynamic digestion using the Human Gastric Simulator (HGS). The extrusion parameters did not significantly impact most measured variables by themselves, indicating that within the tested ranges, any of the processing conditions could be used to produce a product with similar digestive behavior. However, the interaction of extrusion parameters (temperature and moisture content) played a significant role in the snack behavior during digestion. For example, the combination of 27% moisture content and 150 degrees C extrusion temperature had higher catechin bioaccessibility and higher starch hydrolysis than the other treatments. Overall, these findings suggest that the processing conditions of third generation snacks enriched with catechin can be optimized within certain ranges with limited modifications in the digestive properties.