Browsing by Author "Yanez, Claudia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffect of the Dispersing Agent on the Electrochemical Response of Glassy Carbon Electrodes Modified with Dispersions of Carbon Nanotubes(WILEY-V C H VERLAG GMBH, 2012) Gonzalez Segura, Karina; Canete Rosales, Paulina; del Rio, Rodrigo; Yanez, Claudia; Ferreyra, Nancy F.; Rivas, Gustavo A.; Bollo, SoledadThe electrochemical response of a glassy carbon electrode modified with carbon nanotubes (CNT) dispersed in two solvents, water and DMF, and two polymers, chitosan and Nafion is reported. The films were homogeneous when the dispersing agent was water or DMF. In the case of polymers, the surfaces present areas with different density of CNTs. A more sensitive electrochemical response was obtained when CNTs are dispersed in the solvents. In the case of CNT dispersed with polymers, the nature of the polymer demonstrated to be a critical parameter not only for dispersing the nanotubes but also for the electrochemical activity of the resulting electrodes.
- ItemNanostructured Fe-N-C pyrolyzed catalyst for the H2O2 electrochemical sensing(2021) Candia-Onfray, Christian; Bollo, Soledad; Yanez, Claudia; Escalona, Nestor; Marco, Jose F.; Menendez, Nieves; Salazar, Ricardo; Recio, F. JavierFe-N-C pyrolyzed materials have been proposed as substitutes of the noble-based catalyst for energy conversion reactions. However, their use as electrochemical sensors has not been deeply explored. In the present work, different Fe-N-C pyrolyzed catalysts were synthesized for the amperometric sensing of the H2O2 reduction in neutral media. The catalysts were characterized by BET, TEM, FESEM, XPS, Mossbauer spectroscopy, and cyclic voltammetry. The catalysts present an N-doped graphitic matrix with a macroporous structure and mesoporous contribution. Different amounts of N-pyridinic, N-pyrrolic, N-graphitic, N-oxides, and FeN4 sites have been detected on the catalysts. Among the different active sites present in the catalysts, the FeN4 structure is proposed as the most catalytic active site for the hydrogen peroxide reduction reaction (HPRR). Under optimal conditions (0.61 V vs. NHE, 0.00 V vs. Ag/AgCl), the materials show a lineal amperometric response in the range of 0.08 and 14 mu M, with a sensitivity of 31.3 mu A mu M-1 cm(-2), and a detection and quantification limits of 0.25 mu M and 0.75 mu M respectively. The amperometric results indicate that the best performance is reached when increasing the amount of FeN4 active sites, and the redox potential of the FeN4 species becomes more positive. The Fe-N-C catalyst stands out for the more positive working potential than other materials proposed in the literature. (C) 2021 Elsevier Ltd. All rights reserved.