Browsing by Author "Wieters, Evie A."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemAlteration of coastal productivity and artisanal fisheries interact to affect a marine food web(2021) Isidora Avila-Thieme, M.; Corcoran, Derek; Perez-Matus, Alejandro; Wieters, Evie A.; Navarrete, Sergio A.; Marquet, Pablo A.; Valdovinos, Fernanda S.Top-down and bottom-up forces determine ecosystem function and dynamics. Fisheries as a top-down force can shorten and destabilize food webs, while effects driven by climate change can alter the bottom-up forces of primary productivity. We assessed the response of a highly-resolved intertidal food web to these two global change drivers, using network analysis and bioenergetic modelling. We quantified the relative importance of artisanal fisheries as another predator species, and evaluated the independent and combined effects of fisheries and changes in plankton productivity on food web dynamics. The food web was robust to the loss of all harvested species but sensitive to the decline in plankton productivity. Interestingly, fisheries dampened the negative impacts of decreasing plankton productivity on non-harvested species by reducing the predation pressure of harvested consumers on non-harvested resources, and reducing the interspecific competition between harvested and non-harvested basal species. In contrast, the decline in plankton productivity increased the sensitivity of harvested species to fishing by reducing the total productivity of the food web. Our results show that strategies for new scenarios caused by climate change are needed to protect marine ecosystems and the wellbeing of local communities dependent on their resources.
 - ItemEasy, fast and reproducible Stochastic Cellular Automata with chouca(2024) Genin, Alexandre; Dupont, Guillaume; Valencia, Daniel; Zucconi, Mauro; Avila-Thiem, M. Isidora; Navarrete, Sergio A.; Wieters, Evie A.Stochastic cellular automata (SCA) are models that describe spatial dynamics using a grid of cells that switch between discrete states over time. They are widely used to understand how small-scale processes scale up to affect ecological dynamics at larger spatial scales, and have been applied to a wide diversity of theoretical and applied problems in all systems, such as arid ecosystems, coral reefs, forests, bacteria, or urban growth. Despite their wide applications, SCA implementations are often ad-hoc, lacking performance, guarantees of correctness and poorly reproducible. De novo implementation of SCA for each specific system and application also represents a major barrier for many practitioners. To provide a unifying, well-tested technical basis to this class of models and facilitate their implementation, we built chouca, an R package that translates definitions of SCA models into compiled code, and runs simulations in an efficient way. chouca supports SCA based on rectangular grids where transition probabilities are defined for each cell, with performance typically two to three orders of magnitude above typical implementations in interpreted languages (e.g. R, Python), all while maintaining an intuitive interface in the R environment. Exact and mean-field simulations can be run, and both numerical and graphical results can be easily exported. Besides providing better reproducibility and accessibility, a fast engine for SCA unlocks novel, computationally intensive statistical approaches, such as simulation-based inference of ecological interactions from field data, which represents by itself an important avenue for research. By providing an easy and efficient entry point to SCAs, chouca lowers the bar to the use of this class of models for ecologists, managers and general practitioners, providing a leveled-off reproducible platform while opening novel methodological approaches.
 - ItemEffects of harvesting on subtidal kelp forests (Lessonia trabeculata) in central Chile(2022) Bularz, Bryan; Fernandez, Miriam; Subida, Maria Dulce; Wieters, Evie A.; Perez-Matus, AlejandroThe systematic degradation of marine ecosystems is a global phenomenon that has important and diverse consequences including biodiversity loss and reduced ecosystem service provisions. In temperate regions, subtidal kelp forests are dominant ecosystems in rocky coasts, subjected to the influence of local-scale stressors and regional environmental variation. For example, kelps within the Humboldt Current System are at risk of degradation from live-harvesting by fisheries. However, limited information exists regarding the long-term consequences of kelp harvesting, which, in turn, limits the ability to provide effective management and conservation efforts. Here, we examined the ecosystem-level consequences of the artisanal subtidal Lessonia trabeculata fishery along the coast of central Chile during a 2-year period, assessing (1) the change in adult and juvenile L. trabeculata density within harvested and nonharvested (control) plots (similar to 90 m(2)), (2) the impact of L. trabeculata harvesting on reef fish and macroinvertebrate assemblages, and (3) the change in density of the most abundant L. trabeculata-associated species. The experiment was conducted over a 2-year period, from December 2016 to May 2019. Approximately 90% of L. trabeculata was removed by an experienced kelp fisherman in experimental plots. After 2 years, L trabeculata and its associated community showed a lack of recovery in the harvested plots. Within these plots, the average abundance of the rock shrimp, Rhynchocinetes typus, and the herbivorous snail, Tegula tridentata, was greater than in nonharvested plots and the pattern persisted over the study period. The difference in abundance of associated species may be key to the (lack of) recovery of L. trabeculata forests. Our study highlights the impact of L. trabeculata harvesting on associated fauna; however, significant knowledge gaps remain regarding the capacity and time frame to reestablish the original biomass of L trabeculata, as well as its associated fauna. The management of L. trabeculata fisheries needs to account for ecosystem-wide impacts in order to better manage and protect vital coastal ecosystems.
 - ItemEmergent Spatial Patterns Can Indicate Upcoming Regime Shifts in a Realistic Model of Coral Community(2024) Genin, Alexandre; Navarrete, Sergio A.; Garcia-Mayor, Angeles; Wieters, Evie A.Increased stress on coastal ecosystems, such as coral reefs, seagrasses, kelp forests, and other habitats, can make them shift toward degraded, often algae-dominated or barren communities. This has already occurred in many places around the world, calling for new approaches to identify where such regime shifts may be triggered. Theoretical work predicts that the spatial structure of habitat-forming species should exhibit changes prior to regime shifts, such as an increase in spatial autocorrelation. However, extending this theory to marine systems requires theoretical models connecting field-supported ecological mechanisms to data and spatial patterns at relevant scales. To do so, we built a spatially explicit model of subtropical coral communities based on experiments and long-term datasets from Rapa Nui (Easter Island, Chile), to test whether spatial indicators could signal upcoming regime shifts in coral communities. Spatial indicators anticipated degradation of coral communities following increases in frequency of bleaching events or coral mortality. However, they were generally unable to signal shifts that followed herbivore loss, a widespread and well-researched source of degradation, likely because herbivory, despite being critical for the maintenance of corals, had comparatively little effect on their self-organization. Informative trends were found under both equilibrium and nonequilibrium conditions but were determined by the type of direct neighbor interactions between corals, which remain relatively poorly documented. These inconsistencies show that while this approach is promising, its application to marine systems will require detailed information about the type of stressor and filling current gaps in our knowledge of interactions at play in coral communities.
 - ItemEnvironmental DNA reveals temporal variation in mesophotic reefs of the Humboldt upwelling ecosystems of central Chile: Toward a baseline for biodiversity monitoring of unexplored marine habitats(2024) Saenz-Agudelo, Pablo; Ramirez, Paula; Beldade, Ricardo; Campoy, Ana N.; Garmendia, Vladimir; Search, Francesca V.; Fernandez, Miriam; Wieters, Evie A.; Navarrete, Sergio A.; Landaeta, Mauricio F.; Perez-Matus, AlejandroTemperate mesophotic reef ecosystems (TMREs) are among the least known marine habitats. Information on their diversity and ecology is geographically and temporally scarce, especially in highly productive large upwelling ecosystems. Lack of information remains an obstacle to understanding the importance of TMREs as habitats, biodiversity reservoirs and their connections with better-studied shallow reefs. Here, we use environmental DNA (eDNA) from water samples to characterize the community composition of TMREs on the central Chilean coast, generating the first baseline for monitoring the biodiversity of these habitats. We analyzed samples from two depths (30 and 60 m) over four seasons (spring, summer, autumn, and winter) and at two locations approximately 16 km apart. We used a panel of three metabarcodes, two that target all eukaryotes (18S rRNA and mitochondrial COI) and one specifically targeting fishes (16S rRNA). All panels combined encompassed eDNA assigned to 42 phyla, 90 classes, 237 orders, and 402 families. The highest family richness was found for the phyla Arthropoda, Bacillariophyta, and Chordata. Overall, family richness was similar between depths but decreased during summer, a pattern consistent at both locations. Our results indicate that the structure (composition) of the mesophotic communities varied predominantly with seasons. We analyzed further the better-resolved fish assemblage and compared eDNA with other visual methods at the same locations and depths. We recovered eDNA from 19 genera of fish, six of these have also been observed on towed underwater videos, while 13 were unique to eDNA. We discuss the potential drivers of seasonal differences in community composition and richness. Our results suggest that eDNA can provide valuable insights for monitoring TMRE communities but highlight the necessity of completing reference DNA databases available for this region.
 - ItemFunctional community structure of shallow hard bottom communities at Easter Island (Rapa Nui)(2014) Wieters, Evie A.; Medrano, Alba; Perez-Matus, AlejandroImportant, often abrupt, and irreversible shifts associated with the degradation of ecosystem functioning and services are increasingly commonplace. Thus, a trait-based view of communities may be more insightful than that based solely on species composition, especially when inferring ecological responses to environmental change. This underscores the importance and urgency of establishing benchmarks against which future community changes and functional structure can be evaluated. As a first step toward setting these baselines and their current spatial variability, we here describe geographic and among-habitat patterns in the functional structure of shallow hard bottom communities, including fish assemblages, across the northeast and west coasts of Rapa Nui. We also document temporal patterns of change in dominant benthic functional groups that have taken place over the past 15 years at selected sites on this isolated Pacific island. Generally weak vertical zonation patterns were observed, with most striking differences due to the paucity of branching pocilloporid corals in shallow waters(<7 m), where massive corals of Porites predominate. We identified three main 'groups' of sites in terms of the relative abundance of major functional groups and these did not follow geographic arrangement or strict coastline orientation. The similar spatial change in benthic and fish functional community structure documented here suggests there may be strong coupling with coastal oceanographic conditions that varies on scales of 1s-10s of km. Temporal patterns document relatively rapid recovery of total coral cover, largely via compensatory change in relative coral composition with an increase in Porites upon abrupt decline of Pocillopora, following extensive coral mortality caused by thermal stress (coral bleaching) in 2000. Moreover, coral abundance in shallow habitats increased beyond pre-disturbance levels (i.e., 1999-2000). In contrast to shallow habitats, corals again suffered extensive mortality and reduced cover by 2005 at mid-(10-15 m) and deep (>15 m) habitats, with contrasting recovery. These results suggest depth-dependent disturbance regimes that differ in types and frequency of events, as well as capacity to recover. Overall, our results highlight the apparent resilience of the current system and provide a first-cut benchmark as to where management subsystems might be prescribed so as to spatially match ecosystem characteristics.
 - ItemGeographic variation in diversity of wave exposed rocky intertidal communities along central Chile(2011) Broitman, Bernardo R.; Veliz, Fredy; Manzur, Tatiana; Wieters, Evie A.; Randall Finke, G.; Fornes, Paulina A.; Valdivia, Nelson; Navarrete, Sergio A.Along the coast of central Chile, geographic trends of diversity have been inferred from literature compilations and museum collections based on species range limits for some taxonomic groups. However, spatially-intensive field-based assessments of macrobenthic species richness are largely missing. Over the course of a multiyear study (1998-2005), we characterized latitudinal patterns of rocky intertidal diversity at 18 sites along the coast of central Chile (29-36 degrees S). At each site, the number of sessile and mobile macrobenthic species was quantified in 0.25 m(2) quadrats. Two estimators of local (alpha) diversity were used: observed local species richness, calculated from the asymptote of a species-rarefaction curve, and the Chao2 index, which takes into account the effect of rare species on estimates of local richness. We identified a total of 71 species belonging to 66 genera for a total of 86 taxa. The most diverse groups were herbivorous mollusks (27 taxa) and macroalgae (43 taxa). Diversity showed a complex spatial pattern with areas of high species richness interspersed with areas of low richness. In accordance with previous work, we found no trend in the number of herbivorous mollusks and an inverse and significant latitudinal gradient in the number of algal species. Our results highlight the need for taxonomically diverse assessments of biodiversity of the dominant taxa that conform intertidal communities.
 - ItemModeling time-varying phytoplankton subsidy reveals at-risk species in a Chilean intertidal ecosystem(2024) Duckwall, Casey; Largier, John L.; Wieters, Evie A.; Valdovinos, Fernanda S.The allometric trophic network (ATN) framework for modeling population dynamics has provided numerous insights into ecosystem functioning in recent years. Herein we extend ATN modeling of the intertidal ecosystem off central Chile to include empirical data on pelagic chlorophyll-a concentration. This intertidal community requires subsidy of primary productivity to support its rich ecosystem. Previous work models this subsidy using a constant rate of phytoplankton input to the system. However, data shows pelagic subsidies exhibit highly variable, pulse-like behavior. The primary contribution of our work is incorporating this variable input into ATN modeling to simulate how this ecosystem may respond to pulses of pelagic phytoplankton. Our model results show that: (1) closely related sea snails respond differently to phytoplankton variability, which is explained by the underlying network structure of the food web; (2) increasing the rate of pelagic-intertidal mixing increases fluctuations in species' biomasses that may increase the risk of local extirpation; (3) predators are the most sensitive species to phytoplankton biomass fluctuations, putting these species at greater risk of extirpation than others. Finally, our work provides a straightforward way to incorporate empirical, time-series data into the ATN framework that will expand this powerful methodology to new applications.
 - ItemSpatio-temporal patterns of the crustacean demersal fishery discard from the south Humboldt Current System, based on scientific observer program (2014-2019)(2023) Landaeta, Mauricio F.; Hernandez-Santoro, Carola; Search, Francesca, V; Castillo, Manuel, I; Bernal, Claudio; Navarrete, Sergio A.; Wieters, Evie A.; Beldade, Ricardo; Navarro Campoi, Ana; Perez-Matus, AlejandroThis study summarises six years of spatio-temporal patterns of the discarded demersal community fauna recorded by onboard scientific observer program for both artisanal and industrial crustacean fisheries between 2014 and 2019, from mesophotic to aphotic depths (96 to 650 m) along the southern Humboldt Current System (28-38 degrees S). In this period, one cold and two warm climatic events were observed during the austral summer 2014, 2015-2016 (ENSO Godzilla), and 2016-2017 (coastal ENSO), respectively. Satellite information showed that Chlorophyll-a concentration varied seasonally and latitudinally, associated with upwelling centres, while equatorial wind stress decreased southward of 36 degrees S. Discards were composed of 108 species, dominated by finfish and molluscs. The Chilean hake Merluccius gayi was dominant and ubiquitous (occurrence, 95% of 9104 hauls), being the most vulnerable species of the bycatch. Three assemblages were identified: assemblage 1 (similar to 200 m deep), dominated by flounders Hippoglossina macrops and lemon crabs Platymera gaudichaudii, assemblage 2 (similar to 260 m deep), dominated by squat lobsters Pleuroncodes monodon and Cervimunida johni and assemblage 3 (similar to 320 m depth), dominated by grenadiers Coelorinchus aconcagua and cardinalfish Epigonus crassicaudus. These assemblages were segregated by depth, and varied by year, and geographic zone. The latter represented changes in the width of the continental shelf, increasing southward of 36 degrees S. Alpha-diversity indexes (richness, Shannon, Simpson, and Pielou) also varied with depth and latitude, with higher diversity in deeper continental waters (> 300 m), between 2018-2019. Finally, at a spatial scale of tens of kilometres, and a monthly basis, interannual variations of biodiversity occurred in the demersal community. Surface sea temperature, chlorophyll-a, or wind stress did not correlate with discarded demersal fauna diversity of the crustacean fishery operating along central Chile.
 - ItemThe Hidden Diversity of Temperate Mesophotic Ecosystems from Central Chile (Southeastern Pacific Ocean) Assessed through Towed Underwater Videos(2023) Campoy, Ana Navarro; Perez-Matus, Alejandro; Wieters, Evie A.; Alarcon-Ireland, Rodrigo; Garmendia, Vladimir; Beldade, Ricardo; Navarrete, Sergio A.; Fernandez, MiriamThe largely unexplored diversity in temperate mesophotic ecosystems (TME, similar to 30-150 m depth) has attracted much attention over the past years. However, the number of studies and knowledge of TME diversity and ecology remains limited and geographically restricted. The absence of information on how assemblages vary across environmental gradients and with depth for most regions also limits our capacity to delimit conservation areas and devise management plans effectively. This study focuses on TME from central Chile and describes the depth distribution of reef fishes and benthic invertebrates and algae for the first time. Through the analysis of towed underwater video surveys between 4.7-95.5 m in multiple sites, we show that total reef fish density and richness decrease with depth but increase with local topographic complexity. The depth-related density varies among fish species and trophic groups, and it reverses in the case of Sebastes oculatus, which increases in density with depth. Sponges and gorgonians dominate benthic assemblages below 20 m depth, and brachiopods and anemones increase below 40 and 60 m, respectively. Some of these species form animal forests which, to some extent, replace the shallow-water kelp forests as structural habitat providers. Nevertheless, the reef fish and benthic community do not show a clear structure with depth or across studied sites. We highlight the urgency to intensify and expand the quantitative characterization of these communities, through this and other methodologies, to better define ecological patterns and advance towards conservation plans for TME, including the Souteastern Pacific region.
 - ItemVariability in oceanographic conditions affecting Mesophotic Ecosystems along the South Eastern Pacific: Latitudinal trends and potential for climate refugia(2024) de la Maza, Lucas; Wieters, Evie A.; Beldade, Ricardo; Landaeta, Mauricio F.; Perez-Matus, Alejandro; Navarrete, Sergio A.Oceans have been changing at the fastest pace since the beginning of the Holocene. The South Eastern Pacific (SEP), including the Humboldt Upwelling Ecosystem (HUE) is subject to changes in upwelling winds, temperature, El Nin o, and the ever-increasing local anthropogenic stressors, all of which have been documented for surface coastal waters where in-situ and remote observations are readily available. Temporal and spatial changes in the adjacent deeper waters where diverse Mesophotic Ecosystems are found have been scarcely documented. These marine ecosystems have been the focus of ecological studies for less than two decades. Here we provide an overview of the thermal variability at mesophotic depths and assess their potential as climatic refugia along all SEP ecoregions. We analyzed a time series of temperature and salinity from a 19 yr reanalysis based on remote and in-situ observations (CTD, ARGO, XBTs, moorings) to quantify variability in the Tropical (0 -5 degrees S), Northern Warm Temperate (5 -30 degrees S); Southern Warm Temperate (30 -39.5 degrees S) and Magellanic subregions (39.5 -45 degrees S), at two mesophotic depth strata (50 and 100 m), and a reference surface (5 m) depth. We assessed variability in the seasonal, interannual (El Nin o) and 'long-term ' (ca. 20 yr) scales, and the relationship with wind velocities. The thermal depth gradient between surface and mesophotic depths did not change smoothly with latitude but peaked within the northern portion of the warm temperate subregion, decreasing towards lower and higher latitudes. Seasonal variation in temperature was also largest in the north and south temperate subregions and minimal in the Magellanic subregion. Depth dampening of seasonal temperature variation was also strengthened at intermediate latitudes and much reduced in the tropics, where seasonal variation at mesophotic depths was similar to that at the surface. The strong interannual El Nin o events were identified at all depths in tropical and temperate subregions, with stronger standardized effects at mesophotic layers than at the surface. Long-term (ca. two decades) temperature trends were significant and changed direction from warming to cooling along the SEP but were generally patchier at mesophotic layers. Spatial temperature gradients have remained relatively stable over the past two decades and were stronger at the surface than at mesophotic depths, and stronger within the tropics than in all other subregions. Surprisingly, the velocity of climate change was patchier and generally faster at mesophotic layers than at the surface. We conclude that, judging solely by physical environmental conditions, mesophotic ecosystems may be used by species with very different temperature affinities in temperate subregions, while in the tropics, more overlap in temperature affinities of component species may be found. Importantly, while the seasonal amplitude is reduced at mesophotic depth in most subregions, except the tropics, interannual disturbances affect mesophotic depths at least as strongly as they do surface waters and climate change velocities are faster at mesophotic depths than at surface. Thus, these ecosystems are not sheltered from inter-annual and longer-term forcing and their biotas might be more vulnerable to climate change than shallow coastal ecosystems.
 
