• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wane, Sam"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Dynamic weed control using selective laser application with object tracking and target scheduling
    (2025) Vargas Fernández, Juan Ignacio; Wane, Sam; Arévalo Ramírez, Tito; Auat Cheein, Fernando
    Selective laser application for weed control is emerging as one of the most sustainable practices for various crops. The system targets weeds using a laser beam with specific time and intensity settings to eliminate undesired plants through thermal damage. However, this process — commonly known as static weed laser treatment — reduces machinery efficiency, as the platform must remain stationary until all visible weeds are treated. To address this limitation, the current work proposes a dynamic laser weeding approach that predicts weed positions while the platform is in motion, thereby improving operational efficiency. Several deep learning architectures (e.g., YOLO series for weed detection and DeepSORT for weed tracking) are evaluated to identify the most effective models for detecting and tracking multiple weeds in RGB images. In addition, a time-constrained scheduling strategy is implemented to determine the order in which weeds are treated, minimizing the number of missed targets. We find that receding horizon control offers the best performance, particularly under strict time and energy constraints. Field deployment results show that YOLOv7 achieves the highest precision, recall, and mean Average Precision (mAP) for weed detection. The dynamic laser weeding system significantly outperforms the static counterpart, enabling up to 2.8 times faster movement while successfully treating 90% of detected weeds. This work presents a proof of concept for dynamic weeding, laying the foundation for future developments in intelligent, autonomous crop protection systems.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback