Browsing by Author "Vio, Carlos P."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItembFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure(2006) Villanueva, Sandra; Cespedes, Carlos; Gonzalez, Alexis; Vio, Carlos P.Recovery from acute renal failure (ARF) requires the replacement of injured cells with new cells that restore tubule epithelial integrity. We described recently the expression of a wide range of nephrogenic proteins in tubular cells after ARF induced by ischemia-reperfusion (I/R) (Villanueva S, Cespedes C, and Vio CP. Am J Physiol Regul Integr Comp Physiol 290: R861-R870, 2006). These markers, namely, Vimentin, neural cell adhesion molecules (Ncam), basic fibroblast growth factor (bFGF), paired homeobox-2 (Pax-2), bone morphogene protein-7 (BMP-7), Noggin, Lim-1, Engrailed, Smad, phospho-Smad, hypoxia-induced factor-1 alpha (HIF-1 alpha), VEGF, and Tie-2, are expressed in a time frame similar to that observed in normal kidney development. bFGF participates in early kidney development as a morphogen involved in mesenchyme/epithelial transition, and it is reexpressed in the recovery phase of ARF. To test the hypothesis that bFGF can accelerate the regeneration after renal damage, we used recombinant bFGF and studied the expression pattern of the above described morphogens in ARF. Male Sprague-Dawley rats were subjected to 30 min of renal ischemic injury and were injected with bFGF 30 mu g/kg followed by reperfusion. Rats were killed and the expression of nephrogenic proteins were analyzed by immunohistochemistry and Western blot analysis. In the animals subjected to I/R treated with bFGF, we observed a 12- to 24-h earlier and more abundant reexpression of the proteins Ncam, bFGF, Pax-2, BMP-7, Noggin, Lim-1, Engrailed, VEGF, and Tie-2 than the I/R untreated rats. In addition, we observed a reduction in renal damage markers ED-1 and alpha-smooth muscle actin. These results indicate that bFGF can participate in the regeneration process and suggest that the treatment with bFGF can induce an earlier regeneration process after ischemic acute renal failure.
- ItemCanonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns(2020) Martinez, Milka; Torres, Viviana I.; Vio, Carlos P.; Inestrosa, Nibaldo C.Wnt ligands play critical roles in neuronal development, synapse formation, synaptic activity, and plasticity. Synaptic plasticity requires molecular remodeling of synapses, implying the expression of key synaptic components. Some studies have linked Wnt signaling activity to changes in synaptic protein levels. However, the presynaptic and postsynaptic gene expression profiles of hippocampal neurons exposed to Wnt proteins have not been studied. Hence, we treated rat cultured hippocampal neurons with recombinant Wnt3a, lithium, and the Wnt inhibitor Dkk-1 for different treatment durations and measured the mRNA and protein levels of pre- and postsynaptic components. The ligand Wnt3a promoted the differential temporal expression of genes encoding presynaptic and postsynaptic proteins. Gene expression of the presynaptic proteins Rim1, piccolo (Pclo), Erc2, Ctbp1 and Rimbp2 increased in a specific temporal pattern. Simultaneously, the mRNA and protein levels of postsynaptic components showed a different temporal expression pattern, e.g., the mRNAs for postsynaptic scaffolding components such as postsynaptic density protein-95 (PSD-95/Dlg4), Homer1 and Shank1 were temporally regulated by both Wnt3a and lithium. On the other hand, the mRNA levels of the gene encoding the protein calcium/calmodulin-dependent protein kinase IV (Camk4), canonically upregulated by Wnt, were increased. Our results suggest that Wnt signaling orchestrates expressional changes in genes encoding presynaptic and postsynaptic components, probably as part of a synaptic plasticity mechanism in neurons.
- ItemCongenital diaphragmatic hernia: phosphodiesterase-5 and Arginase inhibitors prevent pulmonary vascular hypoplasia in rat lungs(2022) Toso, Alberto; Aranguiz, Óscar; Cespedes, Carlos; Navarrete, Orieta; Hernández, Cherie; Vio, Carlos P.; Luco Illanes, Matías Fernando; Casanello Toledo, Paola Cecilia; Kattan Said, Alberto JavierBackground Severe pulmonary hypoplasia related to congenital diaphragmatic hernia (CDH) continues to be a potentially fatal condition despite advanced postnatal management strategies. Objective To evaluate the effect of the antenatal sildenafil and 2(S)-amino-6-boronohexanoic acid (ABH-Arginase inhibitor) on lung volume, pulmonary vascular development, and nitric oxide (NO) synthesis in a Nitrofen-induced CDH rat model. Methods Nitrofen-induced CDH rat model was used. Nitrofen was administrated on embryonic day(E) 9,5. At E14, five intervention groups were treated separately: Nitrofen, Nitrofen+Sildenafil, Nitrofen+ABH, Nitrofen+Sildenafil+ABH and Control. At term, offspring's lungs were weighed, some paraffin-embedded for histology, others snap-frozen to analyze eNOS, Arginase I-II expression, and activity. Results In CDH-bearing offsprings, ABH or Sildenafil+ABH preserved the total lung/body-weight index (p < 0.001), preventing pulmonary vascular smooth muscle cell hyperproliferation and improving lung morphometry. Sildenafil+ABH increased 1.7-fold the lung nitrite levels (p < 0.01) without changes in eNOS expression. Sildenafil and ABH improved the number of pulmonary vessels. Conclusion These results suggest that in this CDH rat model, the basal activity of Arginase participates in the lung volume and, together with phosphodiesterase-5, regulates NOS activity in the term fetal lung. The combined treatment (Sildenafil+ABH) could revert some of the pulmonary features in CDH by improving the local NO synthesis and preventing smooth muscle cell hyperproliferation. Impact This study presents Arginase inhibition as a new therapeutic target and the importance of the combined antenatal treatment to improve pulmonary vascular development in a congenital diaphragmatic hernia (CDH) rat model. This study shows that the action of an Arginase inhibitor (ABH) enhances the effects already described for sildenafil in this model. These results reinforce the importance of prenatal treatments' synergy in recovering the hypoplastic lung in the Nitrofen-induced CDH rat model.
- ItemCyclooxygenase-2 and hypoxia-regulated proteins are modulated by basic fibroblast growth factor in acute renal failure(SOC BIOLGIA CHILE, 2012) Villanueva, Sandra; Escobar, Pia; Jacubovsky, Ioram; Irarrazabal, Carlos; Carreno, Juan E.; Erpel, Jose M.; Cespedes, Carlos; Gonzalez, Alexis A.; Vio, Carlos P.; Velarde, VictoriaAcute renal failure (ARF) can be caused by injuries that induce tissue hypoxia, which in turn can trigger adaptive or inflammatory responses. We previously showed the participation of basic fibroblast growth factor (FGF-2) in renal repair. Based on this, the aim of this study was to analyze the effect of FGF-2 signaling pathway manipulation at hypoxia-induced protein levels, as well as in key proteins from the vasoactive systems of the kidney. We injected rat kidneys with FGF-2 recombinant protein (r-FGF) or FGF-2 receptor antisense oligonucleotide (FGFR2-ASO) after bilateral ischemia, and evaluated the presence of iNOS, EPO and HO-1, in representation of hypoxia-induced proteins, as well as COX-2, renin, kallikrein, and B2KR, in representation of the vasoactive systems of the kidney. A reduction in iNOS, HO-1, EPO, renin, kallikrein, B2KR, and in renal damage was observed in animals treated with r-FGF. The opposite effect was found with FGF-2 receptor down-regulation. In contrast, COX-2 protein levels were higher in kidneys treated with r-FGF and lower in those that received FGFR2-ASO, as compared to saline treated kidneys. These results suggest that the protective role of FGF-2 in the pathogenesis of ARF induced by I/R is a complex process, through which a differential regulation of metabolic pathways takes place.
- ItemE Prostanoid-1 receptor regulates renal medullary αENaC in rats infused with angiotensin II(2009) Gonzalez, Alexis A.; Cespedes, Carlos; Villanueva, Sandra; Michea, Luis; Vio, Carlos P.E Prostanoid (EP) receptors play an important role in urinary Na+ excretion. In the kidney, the epithelial sodium channel (ENaC) is the rate-limiting-step for Na+ reabsorption. We hypothesized that activation of EP1/EP3 regulates the expression of ENaC in the face of renin-angiotensin-aldosterone-system (RAAS) activation. In primary cultures of inner medullary collecting duct (IMCD) cells, sulprostone (EP1 > EP3 agonist, 1 mu M) and 17 Phenyl trinor (17 Pt, EP1 agonist, 10 mu M) prevented the up-regulation of alpha ENaC mRNA induced by aldosterone (10 nM). In Sprague-Dawley rats infused with angiotensin II (0.4 mu g/kg/min), alpha ENaC expression was up-regulated in renal cortex and medulla coincidently with high plasma aldosterone levels. Sulprostone and/or 17 Pt prevented this effect in renal medulla but not in cortex. Immunocytochemistry demonstrated that IMCD cells express EP1. Our results suggest that specific activation of EP1 receptor during RAAS activation antagonizes the action of aldosterone on alpha ENaC expression in the renal medulla. (C) 2009 Elsevier Inc. All rights reserved.
- ItemFetal Programming of Renal Dysfunction and High Blood Pressure by Chronodisruption(2019) Mendez, Natalia; Torres-Farfan, Claudia; Salazar, Esteban; Bascur, Pia; Bastidas, Carla; Vergara, Karina; Spichiger, Carlos; Halabi, Diego; Vio, Carlos P.; Richter, Hans G.Adverse prenatal conditions are known to impose significant trade-offs impinging on health and disease balance during adult life. Among several deleterious factors associated with complicated pregnancy, alteration of the gestational photoperiod remains largely unknown. Previously, we reported that prenatal manipulation of the photoperiod has adverse effects on the mother, fetus, and adult offspring; including cardiac hypertrophy. Here, we investigated whether chronic photoperiod shifting (CPS) during gestation may program adult renal function and blood pressure regulation. To this end, pregnant rats were subjected to CPS throughout pregnancy to evaluate the renal effects on the fetus and adult offspring. In the kidney at 18 days of gestation, both clock and clock-controlled gene expression did not display a daily pattern, although there were recurrent weaves of transcriptional activity along the 24 h in the control group. Using DNA microarray, significant differential expression was found for 1,703 transcripts in CPS relative to control fetal kidney (835 up-regulated and 868 down-regulated). Functional genomics assessment revealed alteration of diverse gene networks in the CPS fetal kidney, including regulation of transcription, aldosterone-regulated Na+ reabsorption and connective tissue differentiation. In adult offspring at 90 days of age, circulating proinflammatory cytokines IL-1 beta and IL-6 were increased under CPS conditions. In these individuals, CPS did not modify kidney clock gene expression but had effects on different genes with specific functions in the nephron. Next, we evaluated several renal markers and the response of blood pressure to 4% NaCl in the diet for 4 weeks (i.e., at 150 days of age). CPS animals displayed elevated systolic blood pressure in basal conditions that remained elevated in response to 4% NaCl, relative to control conditions. At this age, CPS modified the expression of Nhe3, Ncc, Atp1a1, Nr3c1 (glucocorticoid receptor), and Nr3c2 (mineralocorticoid receptor); while Nkcc, Col3A1, and Opn were modified in the CPS 4%+NaCl group. Furthermore, CPS decreased protein expression of Kallikrein and COX-2, both involved in sodium handling. In conclusion, gestational chronodisruption programs kidney dysfunction at different levels, conceivably underlying the prehypertensive phenotype observed in the adult CPS offspring.
- ItemHuman mesenchymal stem cells derived from adipose tissue reduce functional and tissue damage in a rat model of chronic renal failure(2013) Villanueva, Sandra; Carreno, Juan E.; Salazar, Lorena; Vergara, Cesar; Strodthoff, Rocio; Fajre, Francisca; Cespedes, Carlos; Saez, Pablo J.; Irarrazabal, Carlos; Bartolucci, Jorge; Figueroa, Fernando; Vio, Carlos P.Therapeutic approaches for CKD (chronic kidney disease) have been able to reduce proteinuria, but not diminish the disease progression. We have demonstrated beneficial effects by injection of BM (bone marrow)-derived MSCs (mesenchymal stem cells) from healthy donors in a rat model with CKD. However, it has recently been reported that BM-MSCs derived from uraemic patients failed to confer functional protection in a similar model. This suggests that autologous BM-MSCs are not suitable for the treatment of CKD. In the present study, we have explored the potential of MSCs derived from adipose tissue (AD-MSCs) as an alternative source of MSCs for the treatment of CKD. We have isolated AD-MSCs and evaluated their effect on the progression of CKD. Adult male SD (Sprague Dawley) rats subjected to 5/6 NPX (nephrectomy) received a single intravenous infusion of 0.5 x 10(6) AD-MSCs or MSC culture medium alone. The therapeutic effect was evaluated by plasma creatinine measurement, structural analysis and angiogenic/epitheliogenic protein expression. AD-MSCs were detected in kidney tissues from NPX animals. This group had a significant reduction in plasma creatinine levels and a lower expression of damage markers ED-1 and alpha-SMA (alpha-smooth muscle actin) (P < 0.05). In addition, treated rats exhibited a higher level of epitheliogenic [Pax-2 and BMP-7 (bone morphogenetic protein 7)] and angiogenic [VEGF (vascular endothelial growth factor)] proteins. The expression of these biomarkers of regeneration was significantly related to the improvement in renal function. Although many aspects of the cell therapy for CKD remain to be investigated, we provide evidence that AD-MSCs, a less invasive and highly available source of MSCs, exert an important therapeutic effect in this pathology.
- ItemLPA-induced expression of CCN2 in muscular fibro/adipogenic progenitors (FAPs): Unraveling cellular communication networks(2024) Cordova-Casanova, Adriana; Cruz-Soca, Meilyn; Gallardo, Felipe S.; Faundez-Contreras, Jennifer; Bock-Pereda, Alexia; Chun, Jerold; Vio, Carlos P.; Casar, Juan Carlos; Brandan, EnriqueCellular Communication Network Factor 2, CCN2, is a profibrotic cytokine implicated in physiological and pathological processes in mammals. The expression of CCN2 is markedly increased in dystrophic muscles. Interestingly, diminishing CCN2 genetically or inhibiting its function improves the phenotypes of chronic muscular fibrosis in rodent models. Elucidating the cell-specific mechanisms behind the induction of CCN2 is a fundamental step in understanding its relevance in muscular dystrophies. Here, we show that the small lipids LPA and 2S-OMPT induce CCN2 expression in fibro/adipogenic progenitors (FAPs) through the activation of the LPA1 receptor and, to a lower extent, by also the LPA6 receptor. These cells show a stronger induction than myoblasts or myotubes. We show that the LPA/LPARs axis requires ROCK kinase activity and organized actin cytoskeleton upstream of YAP/TAZ signaling effectors to upregulate CCN2 levels, suggesting that mechanical signals are part of the mechanism behind this process. In conclusion, we explored the role of the LPA/LPAR axis on CCN2 expression, showing a strong cytoskeletal-dependent response in muscular FAPs.
- ItemMegalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function(PUBLIC LIBRARY SCIENCE, 2011) Cabezas, Felipe; Lagos, Jonathan; Cespedes, Carlos; Vio, Carlos P.; Bronfman, Miguel; Marzolo, Maria PazBackground: Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs.