Browsing by Author "Vega, Emanuel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems(2021) Lemus-Romani, Jose; Becerra-Rozas, Marcelo; Crawford, Broderick; Soto, Ricardo; Cisternas-Caneo, Felipe; Vega, Emanuel; Castillo, Mauricio; Tapia, Diego; Astorga, Gino; Palma, Wenceslao; Castro, Carlos; Garcia, JoseCurrently, industry is undergoing an exponential increase in binary-based combinatorial problems. In this regard, metaheuristics have been a common trend in the field in order to design approaches to successfully solve them. Thus, a well-known strategy includes the employment of continuous swarm-based algorithms transformed to perform in binary environments. In this work, we propose a hybrid approach that contains discrete smartly adapted population-based strategies to efficiently tackle binary-based problems. The proposed approach employs a reinforcement learning technique, known as SARSA (State-Action-Reward-State-Action), in order to utilize knowledge based on the run time. In order to test the viability and competitiveness of our proposal, we compare discrete state-of-the-art algorithms smartly assisted by SARSA. Finally, we illustrate interesting results where the proposed hybrid outperforms other approaches, thus, providing a novel option to tackle these types of problems in industry.
- ItemAutonomous Parameter Balance in Population-Based Approaches: A Self-Adaptive Learning-Based Strategy(2024) Vega, Emanuel; Lemus-Romani, Jose; Soto, Ricardo; Crawford, Broderick; Loffler, Christoffer; Pena, Javier; Talbi, El-GazhaliPopulation-based metaheuristics can be seen as a set of agents that smartly explore the space of solutions of a given optimization problem. These agents are commonly governed by movement operators that decide how the exploration is driven. Although metaheuristics have successfully been used for more than 20 years, performing rapid and high-quality parameter control is still a main concern. For instance, deciding the proper population size yielding a good balance between quality of results and computing time is constantly a hard task, even more so in the presence of an unexplored optimization problem. In this paper, we propose a self-adaptive strategy based on the on-line population balance, which aims for improvements in the performance and search process on population-based algorithms. The design behind the proposed approach relies on three different components. Firstly, an optimization-based component which defines all metaheuristic tasks related to carry out the resolution of the optimization problems. Secondly, a learning-based component focused on transforming dynamic data into knowledge in order to influence the search in the solution space. Thirdly, a probabilistic-based selector component is designed to dynamically adjust the population. We illustrate an extensive experimental process on large instance sets from three well-known discrete optimization problems: Manufacturing Cell Design Problem, Set covering Problem, and Multidimensional Knapsack Problem. The proposed approach is able to compete against classic, autonomous, as well as IRace-tuned metaheuristics, yielding interesting results and potential future work regarding dynamically adjusting the number of solutions interacting on different times within the search process.