Browsing by Author "Varala, Kranthi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPlant ecological genomics at the limits of life in the Atacama Desert(2021) Eshel, Gil; Araus, Viviana; Undurraga, Soledad; Soto, Daniela C.; Moraga, Carol; Montecinos, Alejandro; Moyano, Tomas; Maldonado, Jonathan; Diaz, Francisca P.; Varala, Kranthi; Nelson, Chase W.; Contreras-Lopez, Orlando; Pal-Gabor, Henrietta; Kraiser, Tatiana; Carrasco-Puga, Gabriela; Nilo-Poyanco, Ricardo; Zegar, Charles M.; Orellana, Ariel; Montecino, Martin; Maass, Alejandro; Allende, Miguel L.; DeSalle, Robert; Stevenson, Dennis W.; Gonzalez, Mauricio; Latorre, Claudio; Coruzzi, Gloria M.; Gutierrez, Rodrigo A.The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Leji = a transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growthpromoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codonbased methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.
- ItemPredictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience(2022) Dussarrat, Thomas; Prigent, Sylvain; Latorre, Claudio; Bernillon, Stephane; Flandin, Amelie; Diaz, Francisca P.; Cassan, Cedric; Van Delft, Pierre; Jacob, Daniel; Varala, Kranthi; Joubes, Jerome; Gibon, Yves; Rolin, Dominique; Gutierrez, Rodrigo A.; Petriacq, PierreCurrent crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.