Browsing by Author "Vanderburg, Andrew"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemA Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*(2021) Trifonov, Trifon; Brahm, Rafael; Espinoza, Nestor; Henning, Thomas; Jordan, Andres; Nesvorny, David; Dawson, Rebekah I.; Lissauer, Jack J.; Lee, Man Hoi; Kossakowski, Diana; Rojas, Felipe I.; Hobson, Melissa J.; Sarkis, Paula; Schlecker, Martin; Bitsch, Bertram; Bakos, Gaspar A.; Barbieri, Mauro; Bhatti, W.; Butler, R. Paul; Crane, Jeffrey D.; Nandakumar, Sangeetha; Diaz, Matias R.; Shectman, Stephen; Teske, Johanna; Torres, Pascal; Suc, Vincent; Vines, Jose I.; Wang, Sharon X.; Ricker, George R.; Shporer, Avi; Vanderburg, Andrew; Dragomir, Diana; Vanderspek, Roland; Burke, Christopher J.; Daylan, Tansu; Shiao, Bernie; Jenkins, Jon M.; Wohler, Bill; Seager, Sara; Winn, Joshua N.TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a (b) = 0.096 +/- 0.001 au, m (b) = 0.98 +/- 0.06 M (Jup)), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a (c) = 0.155 +/- 0.002 au, m (c) = 0.37 +/- 0.10 M (Jup)) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M (circle dot), a radius of 0.79 R (circle dot), and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
- ItemHD 2685 b: a hot Jupiter orbiting an early F-type star detected by TESS(2019) Jones, Matias, I; Brahm, Rafael; Espinoza, Nestor; Wang, Songhu; Shporer, Avi; Henning, Thomas; Jordan, Andres; Sarkis, Paula; Paredes, Leonardo A.; Hodari-Sadiki, James; Henrys, Todd; Cruz, Bryndis; Nielsen, Louise D.; Bouchy, Francois; Pepe, Francesco; Segransan, Damien; Turner, Oliver; Udry, Stephane; Marmier, Maxime; Lovis, Christophe; Bakos, Gaspar; Osip, David; Suc, Vincent; Ziegler, Carl; Tokovinin, Andrei; Law, Nick M.; Mann, Andrew W.; Relles, Howard; Collins, Karen A.; Bayliss, Daniel; Sedaghati, Elyar; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Smith, Jeffrey C.; Davies, Misty; Tenenbaum, Peter; Dittmann, Jason; Vanderburg, Andrew; Christiansen, Jessie L.; Haworth, Kari; Doty, John; Furesz, Gabor; Laughlin, Greg; Matthews, Elisabeth; Crossfield, Ian; Howell, Steve; Ciardi, David; Gonzales, Erica; Matson, Rachel; Beichman, Charles; Schlieder, JoshuaWe report on the confirmation of a transiting giant planet around the relatively hot (T-eff = 6801 +/- 76 K) star HD 2685, whose transit signal was detected in Sector 1 data of NASA's TESS mission. We confirmed the planetary nature of the transit signal using Doppler velocimetric measurements with CHIRON, CORALIE, and FEROS, as well as using photometric data obtained with the Chilean-Hungarian Automated Telescope and the Las Cumbres Observatory. From the joint analysis of photometry and radial velocities, we derived the following parameters for HD 2685 b: P =4.12688(-0.00004)(+0.00005) days, e =0.091(-0.047)(+0.039), Mp = 1.17 +/- 0.12 M-J, and R-p =1.44 +/- 0.05 R-J. This system is a typical example of an inflated transiting hot Jupiter in a low-eccentricity orbit. Based on the apparent visual magnitude (V = 9.6 mag) of the host star, this is one of the brightest known stars hosting a transiting hot Jupiter, and it is a good example of the upcoming systems that will be detected by TESS during the two-year primary mission. This is also an excellent target for future ground- and space-based atmospheric characterization as well as a good candidate for measuring the projected spin-orbit misalignment angle through the Rossiter-McLaughlin effect.
- ItemPrecise Transit and Radial-velocity Characterization of a Resonant Pair: The Warm Jupiter TOI-216c and Eccentric Warm Neptune TOI-216b(2021) Dawson, Rebekah I.; Huang, Chelsea X.; Brahm, Rafael; Collins, Karen A.; Hobson, Melissa J.; Jordan, Andres; Dong, Jiayin; Korth, Judith; Trifonov, Trifon; Abe, Lyu; Agabi, Abdelkrim; Bruni, Ivan; Butler, R. Paul; Barbieri, Mauro; Collins, Kevin I.; Conti, Dennis M.; Crane, Jeffrey D.; Crouzet, Nicolas; Dransfield, Georgina; Evans, Phil; Espinoza, Nestor; Gan, Tianjun; Guillot, Tristan; Henning, Thomas; Lissauer, Jack J.; Jensen, Eric L. N.; Sainte, Wenceslas Marie; Mekarnia, Djamel; Myers, Gordon; Nandakumar, Sangeetha; Relles, Howard M.; Sarkis, Paula; Torres, Pascal; Shectman, Stephen; Schmider, Francois-Xavier; Shporer, Avi; Stockdale, Chris; Teske, Johanna; Triaud, Amaury H. M. J.; Wang, Sharon Xuesong; Ziegler, Carl; Ricker, G.; Vanderspek, R.; Latham, David W.; Seager, S.; Winn, J.; Jenkins, Jon M.; Bouma, L. G.; Burt, Jennifer A.; Charbonneau, David; Levine, Alan M.; McDermott, Scott; McLean, Brian; Rose, Mark E.; Vanderburg, Andrew; Wohler, BillTOI-216 hosts a pair of warm, large exoplanets discovered by the TESS mission. These planets were found to be in or near the 2:1 resonance, and both of them exhibit transit timing variations (TTVs). Precise characterization of the planets' masses and radii, orbital properties, and resonant behavior can test theories for the origins of planets orbiting close to their stars. Previous characterization of the system using the first six sectors of TESS data suffered from a degeneracy between planet mass and orbital eccentricity. Radial-velocity measurements using HARPS, FEROS, and the Planet Finder Spectrograph break that degeneracy, and an expanded TTV baseline from TESS and an ongoing ground-based transit observing campaign increase the precision of the mass and eccentricity measurements. We determine that TOI-216c is a warm Jupiter, TOI-216b is an eccentric warm Neptune, and that they librate in 2:1 resonance with a moderate libration amplitude of deg, a small but significant free eccentricity of for TOI-216b, and a small but significant mutual inclination of 12-39 (95% confidence interval). The libration amplitude, free eccentricity, and mutual inclination imply a disturbance of TOI-216b before or after resonance capture, perhaps by an undetected third planet.
- ItemTESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images(2021) Rodriguez, Joseph E.; Quinn, Samuel N.; Zhou, George; Vanderburg, Andrew; Nielsen, Louise D.; Wittenmyer, Robert A.; Brahm, Rafael; Reed, Phillip A.; Huang, Chelsea X.; Vach, Sydney; Ciardi, David R.; Oelkers, Ryan J.; Stassun, Keivan G.; Hellier, Coel; Gaudi, B. Scott; Eastman, Jason D.; Collins, Karen A.; Bieryla, Allyson; Christian, Sam; Latham, David W.; Carleo, Ilaria; Wright, Duncan J.; Matthews, Elisabeth; Gonzales, Erica J.; Ziegler, Carl; Dressing, Courtney D.; Howell, Steve B.; Tan, Thiam-Guan; Wittrock, Justin; Plavchan, Peter; McLeod, Kim K.; Baker, David; Wang, Gavin; Radford, Don J.; Schwarz, Richard P.; Esposito, Massimiliano; Ricker, George R.; Vanderspek, Roland K.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Addison, Brett; Anderson, D. R.; Barclay, Thomas; Beatty, Thomas G.; Berlind, Perry; Bouchy, Francois; Bowen, Michael; Bowler, Brendan P.; Brasseur, C. E.; Briceno, Cesar; Caldwell, Douglas A.; Calkins, Michael L.; Cartwright, Scott; Chaturvedi, Priyanka; Chaverot, Guillaume; Chimaladinne, Sudhish; Christiansen, Jessie L.; Collins, Kevin I.; Crossfield, Ian J. M.; Eastridge, Kevin; Espinoza, Nestor; Esquerdo, Gilbert A.; Feliz, Dax L.; Fenske, Tyler; Fong, William; Gan, Tianjun; Giacalone, Steven; Gill, Holden; Gordon, Lindsey; Granados, A.; Grieves, Nolan; Guenther, Eike W.; Guerrero, Natalia; Henning, Thomas; Henze, Christopher E.; Hesse, Katharine; Hobson, Melissa J.; Horner, Jonathan; James, David J.; Jensen, Eric L. N.; Jimenez, Mary; Jordan, Andres; Kane, Stephen R.; Kielkopf, John; Kim, Kingsley; Kuhn, Rudolf B.; Latouf, Natasha; Law, Nicholas M.; Levine, Alan M.; Lund, Michael B.; Mann, Andrew W.; Mao, Shude; Matson, Rachel A.; Mengel, Matthew W.; Mink, Jessica; Newman, Patrick; O'Dwyer, Tanner; Okumura, Jack; Palle, Enric; Pepper, Joshua; Quintana, Elisa V.; Sarkis, Paula; Savel, Arjun B.; Schlieder, Joshua E.; Schnaible, Chloe; Shporer, Avi; Sefako, Ramotholo; Seidel, Julia V.; Siverd, Robert J.; Skinner, Brett; Stalport, Manu; Stevens, Daniel J.; Stibbards, Caitlin; Tinney, C. G.; West, R. G.; Yahalomi, Daniel A.; Zhang, HuiWe present the discovery and characterization of five hot and warm Jupiters-TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b ( TIC 139375960)-based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R-P = 1.01-1.77 R-J) and have masses that range from 0.85 to 6.33 M-J. The host stars of these systems have F and G spectral types (5595 <= T-eff <= 6460 K) and are all relatively bright (9.5 < V < 10.8, 8.2 < K < 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g < 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R-P > 1.7 R-J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31(-0.30)(+) (0.28) M-J and a statistically significant, nonzero orbital eccentricity of e = 0.074(-0.022)(+) (0.021). This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.
- ItemTESS Giants Transiting Giants. I.: A Noninflated Hot Jupiter Orbiting a Massive Subgiant(2022) Saunders, Nicholas; Grunblatt, Samuel K.; Huber, Daniel; Collins, Karen A.; Jensen, Eric L. N.; Vanderburg, Andrew; Brahm, Rafael; Jordan, Andres; Espinoza, Nestor; Henning, Thomas; Hobson, Melissa J.; Quinn, Samuel N.; Zhou, George; Butler, R. Paul; Crause, Lisa; Kuhn, Rudi B.; Mogotsi, K. Moses; Hellier, Coel; Angus, Ruth; Hattori, Soichiro; Chontos, Ashley; Ricker, George R.; Jenkins, Jon M.; Tenenbaum, Peter; Latham, David W.; Seager, Sara; Vanderspek, Roland K.; Winn, Joshua N.; Stockdale, Chris; Cloutier, RyanWhile the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M-* = 1.53 +/- 0.12 M-circle dot, R-* = 2.90 +/- 0.14 R-circle dot) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R (p) = 1.017 +/- 0.051 R (J) and mass of M (p) = 0.65 +/- 0.16 M (J) . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.
- ItemTOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star(2021) Addison, Brett C.; Wright, Duncan J.; Nicholson, Belinda A.; Cale, Bryson; Mocnik, Teo; Huber, Daniel; Plavchan, Peter; Wittenmyer, Robert A.; Vanderburg, Andrew; Chaplin, William J.; Chontos, Ashley; Clark, Jake T.; Eastman, Jason D.; Ziegler, Carl; Brahm, Rafael; Carter, Bradley D.; Clerte, Mathieu; Espinoza, Nestor; Horner, Jonathan; Bentley, John; Jordan, Andres; Kane, Stephen R.; Kielkopf, John F.; Laychock, Emilie; Mengel, Matthew W.; Okumura, Jack; Stassun, Keivan G.; Bedding, Timothy R.; Bowler, Brendan P.; Burnelis, Andrius; Blanco-Cuaresma, Sergi; Collins, Michaela; Crossfield, Ian; Davis, Allen B.; Evensberget, Dag; Heitzmann, Alexis; Howell, Steve B.; Law, Nicholas; Mann, Andrew W.; Marsden, Stephen C.; Matson, Rachel A.; O'Connor, James H.; Shporer, Avi; Stevens, Catherine; Tinney, C. G.; Tylor, Christopher; Wang, Songhu; Zhang, Hui; Henning, Thomas; Kossakowski, Diana; Ricker, George; Sarkis, Paula; Schlecker, Martin; Torres, Pascal; Vanderspek, Roland; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Mireles, Ismael; Rowden, Pam; Pepper, Joshua; Daylan, Tansu; Schlieder, Joshua E.; Collins, Karen A.; Collins, Kevin, I; Tan, Thiam-Guan; Ball, Warrick H.; Basu, Sarbani; Buzasi, Derek L.; Campante, Tiago L.; Corsaro, Enrico; Gonzalez-Cuesta, L.; Davies, Guy R.; de Almeida, Leandro; do Nascimento, Jose-Dias, Jr.; Garcia, Rafael A.; Guo, Zhao; Handberg, Rasmus; Hekker, Saskia; Hey, Daniel R.; Kallinger, Thomas; Kawaler, Steven D.; Kayhan, Cenk; Kuszlewicz, James S.; Lund, Mikkel N.; Lyttle, Alexander; Mathur, Savita; Miglio, Andrea; Mosser, Benoit; Nielsen, Martin B.; Serenelli, Aldo M.; Aguirre, Victor Silva; Themessl, NathalieWe report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the MINERVA-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of M-P = 0.138 +/- 0.023M(J) (43.9 +/- 7.3 M-circle plus), a radius of R-P = 0.639 +/- 0.013 R-J (7.16 +/- 0.15 R-circle plus), bulk density of 0.65(-0.11)(+0.12) (cgs), and period 18.38818(-0.00084)(+0.00085) days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M-* = 1.390 +/- 0.046(Msun), R-* = 1.888 +/- 0.033 R-sun, T-eff = 6075 +/- 90 K, and vsin i = 11.3 +/- 0.5 kms(-1). Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a similar to 71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (similar to 100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
