Browsing by Author "Van der Werf, Paul"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemALMA Observation of NGC 5135: The Circumnuclear CO (6-5) and Dust Continuum Emission at 45 pc Resolution(2018) Cao, Tianwen; Lu, Nanyao; Xu, C. Kevin; Zhao, Yinghe; Madhav Kalari, Venu; Gao, Yu; Charmandaris, Vassilis; Diaz Santos, Tanio; Van der Werf, Paul; Cao, Chen; Wu, Hong; Inami, Hanae; Evans, Aaron S.
- ItemExtensive Lensing Survey of Optical and Near-infrared Dark Objects (El Sonido): HST H-faint Galaxies behind 101 Lensing Clusters(2021) Sun, Fengwu; Egami, Eiichi; Perez-Gonzalez, Pablo G.; Smail, Ian; Caputi, Karina I.; Bauer, Franz E.; Rawle, Timothy D.; Fujimoto, Seiji; Kohno, Kotaro; Dudzeviciute, Ugne; Atek, Hakim; Bianconi, Matteo; Chapman, Scott C.; Combes, Francoise; Jauzac, Mathilde; Jolly, Jean-Baptiste; Koekemoer, Anton M.; Magdis, Georgios E.; Rodighiero, Giulia; Rujopakarn, Wiphu; Schaerer, Daniel; Steinhardt, Charles L.; Van der Werf, Paul; Walth, Gregory L.; Weaver, John R.We present a Spitzer/IRAC survey of H-faint (H-160 greater than or similar to 26.4, < 5 sigma) sources in 101 lensing cluster fields. Across a CANDELS/Wide-like survey area of similar to 648 arcmin(2) (effectively similar to 221 arcmin(2) in the source plane), we have securely discovered 53 sources in the IRAC Channel-2 band (CH2, 4.5 mu m; median CH2 = 22.46 +/- 0.11 AB mag) that lack robust HST/WFC3-IR F160W counterparts. The most remarkable source in our sample, namely ES-009 in the field of Abell 2813, is the brightest H-faint galaxy at 4.5 mu m known so far (CH2 = 20.48 +/- 0.03 AB mag). We show that the H-faint sources in our sample are massive (median M-star = 10 10.3 +/- 0.3 M-circle dot, star-forming (median star formation rate =1001 M-circle dot yr(-1)), and dust-obscured (A(v) = 2.6 +/- 0.3) galaxies around a median photometric redshift of z = 3.9 +/- 0.4. The stellar continua of 14 H-faint galaxies can be resolved in the CH2 band, suggesting a median circularized effective radius (R-e,R-circ; lensing corrected) of 1.9 +/- 0.2 kpc and <1.5 kpc for the resolved and whole samples, respectively. This is consistent with the sizes of massive unobscured galaxies at z similar to 4, indicating that H-faint galaxies represent the dusty tail of the distribution of a wider galaxy population. Comparing with the ALMA dust continuum sizes of similar galaxies reported previously, we conclude that the heavy dust obscuration in H-faint galaxies is related to the compactness of both stellar and dust continua (R-e,R-circ similar to 1 kpc). These H-faint galaxies make up 161 3 % of the galaxies in the stellar-mass range of 10(10) - 10(11.2) M-circle dot at z = 3 similar to 5, contributing to 8(-4)(+8)% of the cosmic star formation rate density in this epoch and likely tracing the early phase of massive galaxy formation.