• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tobar, Jaime A."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Immune complex-induced enhancement of bacterial antigen presentation requires Fcγ Receptor III expression on dendritic cells
    (2007) Herrada, Andres A.; Contreras, Francisco J.; Tobar, Jaime A.; Pacheco, Rodrigo; Kalergis, Alexis M.
    Dendritic cells (DCs) are capable of initiating adaptive immune responses against infectious agents by presenting pathogen-derived antigens on MHC molecules to naive T cells. Because of their key role in priming adaptive immunity, it is expected that interfering with DC function would be advantageous to the pathogen. We have previously shown that Salmonella enterica, serovar Typhimurium (ST), is able to survive inside DCs and interfere with their function by avoiding activation of bacteria-specific T cells. In contrast, when ST is targeted to Fc gamma receptors on the DC surface, bacteria are degraded and their antigens presented to T cells. However, the specific Fc gamma receptor responsible of restoring presentation of antigens remains unknown. Here, we show that IgG-coated ST was targeted to lysosomes and degraded and its antigens presented on MHC molecules only when the low-affinity activating Fc gamma RIII was expressed on DCs. Fc gamma RIII-mediated enhancement of Ag presentation led to a robust activation of T cells specific for bacteria-expressed antigens. Laser confocal and electron microscopy analyses revealed that IgG-coated ST was rerouted to the lysosomal pathway through an Fc gamma RIII-dependent mechanism. PI-3K activity was required for this process, because specific inhibitors promoted the survival of IgG-coated ST inside DCs and prevented DCs from activating bacteria-specific T cells. Our data suggest that the DC capacity to efficiently activate T cells upon capturing IgG-coated virulent bacteria is mediated by Fc gamma RIII and requires PI-3K activity.
  • No Thumbnail Available
    Item
    Salmonella escape from antigen presentation can be overcome by targeting bacteria to Fc gamma receptors on dendritic cells.
    (2004) Tobar, Jaime A.; González, Pablo A.; Kalergis, Alexis M.
    Dendritic cells (DCs) are professional APCs with the unique ability to activate naive T cells, which is required for initiation of the adaptive immune response against pathogens. Therefore, interfering with DC function would be advantageous for pathogen survival and dissemination. In this study we provide evidence suggesting that Salmonella enterica serovar typhimurium, the causative agent of typhoid disease in the mouse, interferes with DC function. Our results indicate that by avoiding lysosomal degradation, S. typhimurium impairs the ability of DCs to present bacterial Ags on MHC class I and II molecules to T cells. This process could correspond to a novel mechanism developed by this pathogen to evade adaptive immunity. In contrast, when S. typhimurium is targeted to FcgammaRs on DCs by coating bacteria with Salmonella-specific IgG, bacterial Ags are efficiently processed and presented on MHC class I and class II molecules. This enhanced Ag presentation leads to a robust activation of bacteria-specific T cells. Laser confocal microscopy experiments show that virulent S. typhimurium is rerouted to the lysosomal degradation pathway of DCs when internalized through FcgammaR. These observations are supported by electron microscopy studies demonstrating that internalized S. typhimurium shows degradation signs only when coated with IgG and captured by FcgammaRs on DCs. Therefore, our data support a potential role for bacteria-specific IgG on the augmentation of Ag processing and presentation by DCs to T cells during the immune response against intracellular bacteria.
  • Loading...
    Thumbnail Image
    Item
    The capacity of Salmonella to survive inside dendritic cells and prevent antigen presentation to T cells is host specific
    (WILEY-BLACKWELL, 2008) Bueno, Susan M.; Gonzalez, Pablo A.; Carreno, Leandro J.; Tobar, Jaime A.; Mora, Guido C.; Pereda, Cristian J.; Salazar Onfray, Flavio; Kalergis, Alexis M.
    Infection with Salmonella enterica serovar Typhimurium (S. Typhimurium) causes a severe and lethal systemic disease in mice, characterized by poor activation of the adaptive immune response against Salmonella-derived antigens. Recently, we and others have reported that this feature relies on the ability of S. Typhimurium to survive within murine dendritic cells (DCs) and avoid the presentation of bacteria-derived antigens to T cells. In contrast, here we show that infection of murine DCs with either S. Typhi or S. Enteritidis, two serovars adapted to different hosts, leads to an efficient T-cell activation both in vitro and in vivo. Accordingly, S. Typhi and S. Enteritidis failed to replicate within murine DCs and were quickly degraded, allowing T-cell activation. In contrast, human DCs were found to be permissive for survival and proliferation of S. Typhi, but not for S. Typhimurium or S. Enteritidis. Our data suggest that Salmonella host restriction is characterized by the ability of these bacteria to survive within DCs and avoid activation of the adaptive immune response in their specific hosts.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback