• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tesen, Kiara"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Groundwater parameters estimation: A hybrid approach of convolutional layers with asynchronous and distributed bio-inspired algorithms
    (2025) Tesen, Kiara; Cortés, Hermilo; Vicuña, Sebastián; Molina-Perez, Edmundo; Suárez, Francisco
    This research focuses on aquifer hydraulic parameters estimation using bio-inspired algorithms since they can tackle groundwater model non-linearities. We propose two novel hybrid frameworks that combine the advantages of convolutional layers (CL) to enhance pattern recognition with heuristic search of Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms. These integrations are implemented using an asynchronous and distributed approach to address efficiency issues in large-scale problems, resulting in ADPSO-CL (Asynchronous and Distributed Particle Swarm Optimization with Convolutional Layers) and ADDE-CL (Asynchronous and Distributed Differential Evolution with Convolutional Layers). The distributed method employs virtual machines, where a server generates and assigns particles to workers, which run in parallel with asynchronous iterative solution exchanges. We assess different algorithm configurations in an integrated water management model by coupling two software: Water Evaluation and Planning (WEAP) and MODFLOW. Results indicate that ADPSO-CL outperforms ADDE-CL by demonstrating more stable asynchronous communication, with fewer incomplete experiments (more than one worker was disconnected before completing all iterations), 33% in contrast to 71%. Additionally, produces results closer to the expected values, with mean absolute percentage error (MAPE) values of 78.25% for hydraulic conductivity and 55.56% for specific yield, compared to 299% and 209% in ADDE-CL. Moreover, ADPSO-CL has the fastest convergence rate, achieving efficient results in about half of the total iterations. This study introduces a novel and scalable architecture for intricate simulation–optimization problems, demonstrating its potential for future applications in real-world water resources planning and management

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback