Browsing by Author "Temple, M. J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAGNFITTER-RX: Modeling the radio-to-X-ray spectral energy distributions of AGNs(2024) Martinez-Ramirez, L. N.; Rivera, G. Calistro; Lusso, E.; Bauer, F. E.; Nardini, E.; Buchner, J.; Brown, M. J. I.; Pineda, J. C. B.; Temple, M. J.; Banerji, M.; Stalevski, M.; Hennawi, J. F.We present new advancements in the modeling of the spectral energy distributions (SEDs) of active galaxies by introducing the radio-to-X-ray fitting capabilities of the publicly available Bayesian code AGNFITTER. The new code release, called AGNFITTER-RX, models the broad-band photometry covering the radio, infrared (IR), optical, ultraviolet (UV), and X-ray bands consistently using a combination of theoretical and semi-empirical models of the active galactic nucleus (AGN) and host-galaxy emission. This framework enables the detailed characterization of four physical components of the active nuclei, namely the accretion disk, the hot dusty torus, the relativistic jets and core radio emission, and the hot corona, and can be used to model three components within the host galaxy: stellar populations, cold dust, and the radio emission from the star-forming regions. Applying AGNFITTER-RX to a diverse sample of 36 AGN SEDs at z less than or similar to 0.7 from the AGN SED ATLAS, we investigated and compared the performance of state-of-the-art torus and accretion disk emission models in terms of fit quality and inferred physical parameters. We find that clumpy torus models that include polar winds and semi-empirical accretion disk templates including emission-line features significantly increase the fit quality in 67% of the sources by reducing by 2 sigma fit residuals in the 1.5-5 mu m and 0.7 mu m regimes. We demonstrate that, by applying AGNFITTER-RX to photometric data, we are able to estimate the inclination and opening angles of the torus, consistent with spectroscopic classifications within the AGN unified model, as well as black hole masses congruent with virial estimates based on H alpha. We investigate wavelength-dependent AGN fractions across the spectrum for Type 1 and Type 2 AGNs, finding dominant AGN fractions in radio, mid-infrared, and X-ray bands, which are in agreement with the findings from empirical methods for AGN selection. The wavelength coverage and the flexibility for the inclusion of state-of-the-art theoretical models make AGNFITTER-RX a unique tool for the further development of SED modeling for AGNs in present and future radio-to-X-ray galaxy surveys.
- ItemBASS XXXVII: The Role of Radiative Feedback in the Growth and Obscuration Properties of Nearby Supermassive Black Holes(2022) Ricci, C.; Ananna, T. T.; Temple, M. J.; Urry, C. M.; Koss, M. J.; Trakhtenbrot, B.; Ueda, Y.; Stern, D.; Bauer, F. E.; Treister, E.; Privon, G. C.; Oh, K.; Paltani, S.; Stalevski, M.; Ho, L. C.; Fabian, A. C.; Mushotzky, R.; Chang, C. S.; Ricci, F.; Kakkad, D.; Sartori, L.; Baer, R.; Caglar, T.; Powell, M.; Harrison, F.We study the relation between obscuration and supermassive black hole (SMBH) accretion using a large sample of hard X-ray selected active galactic nuclei (AGNs). We find a strong decrease in the fraction of obscured sources above the Eddington limit for dusty gas (log lambda(Edd) >= -2) confirming earlier results, and consistent with the radiation-regulated unification model. This also explains the difference in the Eddington ratio distribution functions (ERDFs) of type 1 and type 2 AGNs obtained by a recent study. The break in the ERDF of nearby AGNs is at log lambda*(Edd) = -1.34 +/- 0.07. This corresponds to the lambda(Edd) where AGNs transition from having most of their sky covered by obscuring material to being mostly devoid of absorbing material. A similar trend is observed for the luminosity function, which implies that most of the SMBH growth in the local universe happens when the AGN is covered by a large reservoir of gas and dust. These results could be explained with a radiation-regulated growth model, in which AGNs move in the N-H-lambda(Edd) plane during their life cycle. The growth episode starts with the AGN mostly unobscured and accreting at low lambda(Edd). As the SMBH is further fueled, lambda(Edd), N-H and the covering factor increase, leading the AGN to be preferentially observed as obscured. Once lambda(Edd) reaches the Eddington limit for dusty gas, the covering factor and N-H rapidly decrease, leading the AGN to be typically observed as unobscured. As the remaining fuel is depleted, the SMBH goes back into a quiescent phase.
- ItemBASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic NucleiRicci, C.; Ichikawa, K.; Stalevski, M.; Kawamuro, T.; Yamada, S.; Ueda, Y.; Mushotzky, R.; Privon, G. C.; Koss, M. J.; Trakhtenbrot, B.; Fabian, A. C.; Ho, L. C.; Asmus, D.; Bauer, Franz Erik; Chang, C. S.; Gupta, K. K.; Oh, K.; Powell, M.; Pfeifle, R. W.; Rojas, A.; Ricci, F.; Temple, M. J.; Toba, Y.; Tortosa, A.; Treister, Ezequiel; Harrison, F.; Stern, D.; Urry, C. M.Accreting supermassive black holes (SMBHs) located at the centers of galaxies are typically surrounded by large quantities of gas and dust. The structure and evolution of this circumnuclear material can be studied at different wavelengths, from the submillimeter to the X-ray. Recent X-ray studies have shown that the covering factor of the obscuring material tends to decrease with increasing Eddington ratio, likely due to radiative feedback on dusty gas. Here we study a sample of 549 nearby (z less than or similar to 0.1) hard X-ray (14-195 keV) selected nonblazar active galactic nuclei (AGN) and use the ratio between the AGN infrared and bolometric luminosity as a proxy of the covering factor. We find that, in agreement with what has been found by X-ray studies of the same sample, the covering factor decreases with increasing Eddington ratio. We also confirm previous findings that showed that obscured AGN typically have larger covering factors than unobscured sources. Finally, we find that the median covering factors of AGN located in different regions of the column density-Eddington ratio diagram are in good agreement with what would be expected from a radiation-regulated growth of SMBHs.