Browsing by Author "Storer, Emilie R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAtacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos(2021) Schaan, Emmanuel; Ferraro, Simone; Amodeo, Stefania; Battaglia, Nicholas; Aiola, Simone; Austermann, Jason E.; Beall, James A.; Bean, Rachel; Becker, Daniel T.; Bond, Richard J.; Calabrese, Erminia; Calafut, Victoria; Choi, Steve K.; Denison, Edward, V; Devlin, Mark J.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Gallardo, Patricio A.; Guan, Yilun; Han, Dongwon; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hlozek, Renee; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Koopman, Brian J.; MacInnis, Amanda; McMahon, Jeff; Madhavacheril, Mathew S.; Moodley, Kavilan; Mroczkowski, Tony; Naess, Sigurd; Nati, Federico; Newburgh, Laura B.; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Salatino, Maria; Sehgal, Neelima; Schillaci, Alessandro; Sifon, Cristobal; Smith, Kendrick M.; Spergel, David N.; Staggs, Suzanne; Storer, Emilie R.; Trac, Hy; Ullom, Joel N.; Van Lanen, Jeff; Vale, Leila R.; van Engelen, Alexander; Magana, Mariana Vargas; Vavagiakis, Eve M.; Wollack, Edward J.; Xu, ZhileiThe scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope DR5 and Planck in combination with the CMASS (mean redshift (z) = 0.55 and host halo mass (M-vir) = 3 x 10(13) M-circle dot) and LOWZ ((z) = 0.31, (M-vir) = 5 x 10(13) M-circle dot) galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and DR12), to study the gas associated with these galaxy groups. Using individual reconstructed velocities, we perform a stacking analysis and reject the no-kSZ hypothesis at 6.5 sigma, the highest significance to date. This directly translates into a measurement of the electron number density profile, and thus of the gas density profile. Despite the limited signal to noise, the measurement shows at high significance that the gas density profile is more extended than the dark matter density profile, for any reasonable baryon abundance (formally >90 sigma for the cosmic baryon abundance). We simultaneously measure the tSZ signal, i.e., the electron thermal pressure profile of the same CMASS objects, and reject the no-tSZ hypothesis at 10 sigma. We combine tSZ and kSZ measurements to estimate the electron temperature to 20% precision in several aperture bins, and find it comparable to the virial temperature. In a companion paper, we analyze these measurements to constrain the gas thermodynamics and the properties of feedback inside galaxy groups. We present the corresponding LOWZ measurements in this paper, ruling out a null kSZ (tSZ) signal at 2.9 (13.9)sigma, and leave their interpretation to future work. This paper and the companion paper demonstrate that current CMB experiments can detect and resolve gas profiles in low mass halos and at high redshifts, which are the most sensitive to feedback in galaxy formation and the most difficult to measure any other way. They will be a crucial input to cosmological hydrodynamical simulations, thus improving our understanding of galaxy formation. These precise gas profiles arc already sufficient to reduce the main limiting theoretical systematic in galaxy-galaxy lensing: baryonic uncertainties. Future such measurements will thus unleash the statistical power of weak lensing from the Rubin, Euclid and Roman observatories. Our stacking software ThumbStackis publicly available and directly applicable to future Simons Observatory and CMB-S4 data.
- ItemAtacama Cosmology Telescope: Constraints on cosmic birefringence(AMER PHYSICAL SOC, 2020) Namikawa, Toshiya; Guan, Yilun; Darwish, Omar; Sherwin, Blake D.; Aiola, Simone; Battaglia, Nicholas; Beall, James A.; Becker, Daniel T.; Bond, J. Richard; Calabrese, Erminia; Chesmore, Grace E.; Choi, Steve K.; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fox, Anna E.; Gallardo, Patricio A.; Gluscevic, Vera; Han, Dongwon; Hasselfield, Matthew; Hilton, Gene C.; Hincks, Adam D.; Hlozek, Renee; Hubmayr, Johannes; Huffenberger, Kevin; Hughes, John P.; Koopman, Brian J.; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; MacInnis, Amanda; Madhavacheril, Mathew S.; Mallaby Kay, Maya; Maurin, Loic; McMahon, Jeffrey; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura B.; Nibarger, John P.; Niemack, Michael D.; Page, Lyman A.; Qu, Frank J.; Robertson, Naomi; Schillaci, Alessandro; Sehgal, Neelima; Sifon, Cristobal; Simon, Sara M.; Spergel, David N.; Staggs, Suzanne T.; Storer, Emilie R.; van Engelen, Alexander; van Lanen, Jeff; Wollack, Edward J.We present new constraints on anisotropic birefringence of the cosmic microwave background polarization using two seasons of data from the Atacama Cosmology Telescope covering 456 square degrees of sky. The birefringence power spectrum, measured using a curved-sky quadratic estimator, is consistent with zero. Our results provide the tightest current constraint on birefringence over a range of angular scales between 5 arc minutes and 9 degrees. We improve previous upper limits on the amplitude of a scale-invariant birefringence power spectrum by a factor of between 2 and 3. Assuming a nearly massless axion field during inflation, our result is equivalent to a 2 sigma upper limit on the Chern-Simons coupling constant between axions and photons of g(alpha gamma) < 4.0 x 10(-2)/H-I, where H-I is the inflationary Hubble scale.
- ItemAtacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel'dovich measurements(2021) Amodeo, Stefania; Battaglia, Nicholas; Schaan, Emmanuel; Ferraro, Simone; Moser, Emily; Aiola, Simone; Austermann, Jason E.; Beall, James A.; Bean, Rachel; Becker, Daniel T.; Bond, Richard J.; Calabrese, Erminia; Calafut, Victoria; Choi, Steve K.; Denison, Edward, V; Devlin, Mark; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Gallardo, Patricio A.; Hall, Kirsten R.; Han, Dongwon; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hlozek, Renee; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Koopman, Brian J.; MacInnis, Amanda; McMahon, Jeff; Madhavacheril, Mathew S.; Moodley, Kavilan; Mroczkowski, Tony; Naess, Sigurd; Nati, Federico; Newburgh, Laura B.; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Schillaci, Alessandro; Sehgal, Neelima; Sifon, Cristobal; Spergel, David N.; Staggs, Suzanne; Storer, Emilie R.; Ullom, Joel N.; Vale, Leila R.; van Engelen, Alexander; Van Lanen, Jeff; Vavagiakis, Eve M.; Wollack, Edward J.; Xu, ZhileiThe thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line of sight. We present constraints on the gas thermodynamics of CMASS (constant stellar mass) galaxies in the Baryon Oscillation Spectroscopic Survey using new measurements of the kSZ and tSZ signals obtained in a companion paper [Schaan et al.]. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection epsilon M.c(2) , where M-* is the stellar mass, to be epsilon = (40 +/- 9) x 10(-6) , and the amplitude of the nonthermal pressure profile to be alpha(Nth) < 0.2(2 sigma), indicating that less than 20% of the total pressure within the virial radius is due to a nonthermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best-fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in [A. Leauthaud et al., Mon. Not. R. Astron. Soc. 467, 3024 (2017)] by half (50% at most), but does not fully reconcile it. Comparing the kSZ and tSZ measurements to cosmological simulations, we find that they underpredict the CGM pressure and to a lesser extent the CGM density at larger radii with probabilities to exceed ranging from 0.00 to 0.03 and 0.12 to 0.14, for tSZ and kSZ, respectively. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve.
- ItemThe Atacama Cosmology Telescope: measurement and analysis of 1D beams for DR4(2022) Lungu, Marius; Storer, Emilie R.; Hasselfield, Matthew; Duivenvoorden, Adriaan J.; Calabrese, Erminia; Chesmore, Grace E.; Choi, Steve K.; Dunkley, Jo; Dunner, Rolando; Gallardo, Patricio A.; Golec, Joseph E.; Guan, Yilun; Hill, J. Colin; Hincks, Adam D.; Hubmayr, Johannes; Madhavacheril, Mathew S.; Mallaby-Kay, Maya; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Puddu, Roberto; Schillaci, Alessandro; Sifon, Cristobal; Staggs, Suzanne; Sunder, Dhaneshwar D.; Wollack, Edward J.; Xu, ZhileiWe describe the measurement and treatment of the telescope beams for the Atacama Cosmology Telescope's fourth data release, DR4. Observations of Uranus are used to measure the central portion (< 12 ') of the beams to roughly -40 dB of the peak. Such planet maps in intensity are used to construct azimuthally averaged beam profiles, which are fit with a physically motivated model before being transformed into Fourier space. We investigate and quantify a number of percent-level corrections to the beams, all of which are important for precision cosmology. Uranus maps in polarization are used to measure the temperature-to-polarization leakage in the main part of the beams, which is. 1% (2.5%) at 150 GHz (98 GHz). The beams also have polarized sidelobes, which are measured with observations of Saturn and deprojected from the ACT time-ordered data. Notable changes relative to past ACT beam analyses include an improved subtraction of the atmospheric effects from Uranus calibration maps, incorporation of a scattering term in the beam profile model, and refinements to the beam model uncertainties and the main temperature-to-polarization leakage terms in the ACT power spectrum analysis.