• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Stahl, Karsten"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Application of machine learning for film thickness prediction in elliptical EHL contact with varying entrainment angle
    (2024) Tosic, Marko; Marian, Max; Habchi, Wassim; Lohner, Thomas; Stahl, Karsten
    This contribution demonstrates the potential of machine learning (ML) algorithms in predicting elastohydrodynamic lubrication (EHL) film thickness in elliptical contact with varying direction of lubricant entrainment, ranging from wide to slender elliptical configurations. The input parameters pertain to worm gear contacts, which are characterized by slender-like elliptical contact between a steel and a soft metal component. The study encompasses generating a database using numerical Finite Element Method (FEM) simulations, training artificial neural network (ANN) models, and evaluating their performance in terms of bias and variance. Key outcomes include the successful training of the ANN models, detailed analysis of the impact of tailored architecture on the ANN models' performance, and the superiority of the ANN compared to other ML regression algorithms. The study further identifies key input parameters that influence prediction accuracy and introduces a strategic dataset augmentation procedure to increase local and overall prediction accuracy. This strategic dataset augmentation enhances model robustness and precision while providing insights for expanding databases collaboratively. It holds potential for broader applications of ML for performance prediction of tribological contacts, thus paving the way for advanced ML models that consider additional factors and collaborative databases refined by multiple research groups.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback