Browsing by Author "Spilker, Justin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMapping Obscuration to Reionization with ALMA (MORA): 2 mm Efficiently Selects the Highest-redshift Obscured Galaxies(2021) Casey, Caitlin M.; Zavala, Jorge A.; Manning, Sinclaire M.; Aravena, Manuel; Béthermin, Matthieu; Caputi, Karina I.; Champagne, Jaclyn B.; Clements, David L.; Drew, Patrick; Finkelstein, Steven L.; Fujimoto, Seiji; Hayward, Christopher C.; Dekel, Anton M.; Kokorev, Vasily; Lagos, Claudia del P.; Long, Arianna S.; Magdis, Georgios E.; Man, Allison W. S.; Mitsuhashi, Ikki; Popping, Gergö; Spilker, Justin; Staguhn, Johannes; Talia, Margherita; Toft, Sune; Treister, Ezequiel; Weaver, John R.; Yun, MinWe present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin(2) at 2 mm. Twelve of 13 detections above 5 sigma are attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of < Z(2) (mm)> = 3.6(-0.3)(+0.4) primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% +/- 11% of sources at z > 3 and 38% +/- 12% of sources at z > 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z < 3) are far more numerous than those at z > 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300 M-circle dot yr(-1) and a relative rarity of similar to 10(-5) Mpc(-3) contribute similar to 30% to the integrated star formation rate density at 3 < z < 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies at z > 2. Analysis of MORA sources' spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with = 2.2(-0.4)(+0.5). The MORA survey represents an important step in taking census of obscured star formation in the universe's first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe's first dusty galaxies.
- ItemThe ALMA-CRISTAL Survey: Spatially Resolved Star Formation Activity and Dust Content in 4 < z < 6 Star-forming Galaxies(2024) Li, Juno; Da Cunha, Elisabete; Gonzalez-Lopez, Jorge; Aravena, Manuel; De Looze, Ilse; Schreiber, N. M. Foerster; Herrera-Camus, Rodrigo; Spilker, Justin; Tadaki, Ken-ichi; Barcos-Munoz, Loreto; Battisti, Andrew J.; Birkin, Jack E.; Bowler, Rebecca A. A.; Davies, Rebecca; Diaz-Santos, Tanio; Ferrara, Andrea; Fisher, Deanne B.; Hodge, Jacqueline; Ikeda, Ryota; Killi, Meghana; Lee, Lilian; Liu, Daizhong; Lutz, Dieter; Mitsuhashi, Ikki; Naab, Thorsten; Posses, Ana; Relano, Monica; Solimano, Manuel; Uebler, Hannah; van der Giessen, Stefan Anthony; Villanueva, VicenteUsing a combination of Hubble Space Telescope (HST), JWST, and Atacama Large Millimeter/submillimeter Array (ALMA) data, we perform spatially resolved spectral energy distributions (SED) fitting of fourteen 4 < z < 6 ultraviolet (UV)-selected main-sequence galaxies targeted by the ALMA Large Program [C ii] Resolved ISM in Star-forming Galaxies. We consistently model the emission from stars and dust in similar to 0.5-1 kpc spatial bins to obtain maps of their physical properties. We find no offsets between the stellar masses (M-*) and star formation rates (SFRs) derived from their global emission and those from adding up the values in our spatial bins, suggesting there is no bias of outshining by young stars on the derived global properties. We show that ALMA observations are important to derive robust parameter maps because they reduce the uncertainties in L-dust (hence, A(V) and SFR). Using these maps, we explore the resolved star-forming main sequence for z similar to 5 galaxies, finding that this relation persists in typical star-forming galaxies in the early Universe. We find less obscured star formation where the M-* (and SFR) surface densities are highest, typically in the central regions, contrary to the global relation between these parameters. We speculate this could be caused by feedback driving gas and dust out of these regions. However, more observations of IR luminosities with ALMA are needed to verify this. Finally, we test empirical SFR prescriptions based on the UV+IR and [C ii] line luminosity, finding they work well at the scales probed (approximately kiloparsec). Our work demonstrates the usefulness of joint HST-, JWST-, and ALMA-resolved SED modeling analyses at high redshift.