• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shaffer, Zachary"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Microbiota of the Pregnant Mouse: Characterization of the Bacterial Communities in the Oral Cavity, Lung, Intestine, and Vagina through Culture and DNA Sequencing
    (2022) Greenberg, Jonathan M.; Romero, Roberto; Winters, Andrew D.; Galaz, Jose; Garcia-Flores, Valeria; Arenas-Hernandez, Marcia; Panzer, Jonathan; Shaffer, Zachary; Kracht, David J.; Gomez-Lopez, Nardhy; Theis, Kevin R.
    Mice are frequently used as animal models for mechanistic studies of infection and obstetrical disease, yet characterization of the murine microbiota during pregnancy is lacking. The objective of this study was to characterize the microbiotas of distinct body sites of the pregnant mouse-vagina, oral cavity, intestine, and lung-that harbor microorganisms that could potentially invade the murine amniotic cavity, thus leading to adverse pregnancy outcomes. The microbiotas of these body sites were characterized through anoxic, hypoxic, and oxic culture as well as through 16S rRNA gene sequencing. With the exception of the vagina, the cultured microbiotas of each body site varied by atmosphere, with the greatest diversity in the cultured microbiota appearing under anoxic conditions. Only cultures of the vagina were comprehensively representative of the microbiota observed through direct DNA sequencing of body site samples, primarily due to the predominance of two Rodentibacter strains. Identified as Rodentibacter pneumotropicus and Rodentibacter heylii, these isolates exhibited predominance patterns similar to those of Lactobacillus crispatus and Lactobacillus iners in the human vagina. Whole-genome sequencing of these Rodentibacter strains revealed shared genomic features, including the ability to degrade glycogen, an abundant polysaccharide in the vagina. In summary, we report body site-specific microbiotas in the pregnant mouse with potential ecological parallels to those of humans. Importantly, our findings indicate that the vaginal microbiotas of pregnant mice can be readily cultured, suggesting that mock vaginal microbiotas can be tractably generated and maintained for experimental manipulation in future mechanistic studies of host vaginal-microbiome interactions.
  • Loading...
    Thumbnail Image
    Item
    Pregnancy tailors endotoxin-induced monocyte and neutrophil responses in the maternal circulation
    (SPRINGER BASEL AG, 2022) Farias-Jofre, Marcelo; Romero, Roberto; Galaz, Jose; Xu, Yi; Tao, Li; Demery-Poulos, Catherine; Arenas-Hernandez, Marcia; Bhatti, Gaurav; Liu, Zhenjie; Kawahara, Naoki; Kanninen, Tomi; Shaffer, Zachary; Chaiworapongsa, Tinnakorn; Theis, Kevin R.; Tarca, Adi L.; Gomez-Lopez, Nardhy
    Objective To comprehensively characterize monocyte and neutrophil responses to E. coli and its product [lipopolysaccharide (LPS) or endotoxin] in vitro during pregnancy.
  • No Thumbnail Available
    Item
    The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study
    (2024) Shaffer, Zachary; Romero, Roberto; Tarca, Adi L.; Galaz, Jose; Arenas-Hernandez, Marcia; Gudicha, Dereje W.; Chaiworapongsa, Tinnakorn; Jung, Eunjung; Suksai, Manaphat; Theis, Kevin R.; Gomez-Lopez, Nardhy; Simon, Carlos
    Background: Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods: Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results: Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions: The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.
  • No Thumbnail Available
    Item
    The Vaginal Microbiota of Pregnant Women Varies with Gestational Age, Maternal Age, and Parity
    (2023) Romero, Roberto; Theis, Kevin R.; Gomez-Lopez, Nardhy; Winters, Andrew D.; Panzer, Jonathan J.; Lin, Huang; Galaz, Jose; Greenberg, Jonathan M.; Shaffer, Zachary; Kracht, David J.; Chaiworapongsa, Tinnakorn; Jung, Eunjung; Gotsch, Francesca; Ravel, Jacques; Peddada, Shyamal D.; Tarca, Adi L.
    There is debate regarding links between the vaginal microbiota and pregnancy complications, especially spontaneous preterm birth. Inconsistencies in results among studies are likely due to differences in sample sizes and cohort ethnicity.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback