Browsing by Author "Schroeder, Declan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemExpression of biomineralization-related ion transport genes in Emiliania huxleyi(2011) Mackinder, Luke; Wheeler, Glen; Schroeder, Declan; von Dassow, Peter; Riebesell, Ulf; Brownlee, ColinBiomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO(2) levels has been well documented. This study looks into the role of several candidate Ca2+, H+ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca2+ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO3- transporter belonging to the solute carrier 4 (SLC4) family, a Ca2+/H+ exchanger belonging to the CAX family of exchangers and a vacuolar H+-ATPase. We also show that the coccolith-associated protein, GPA is down-regulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented.
- ItemPan genome of the phytoplankton Emiliania underpins its global distribution(2013) Read, Betsy A.; Kegel, Jessica; Klute, Mary J.; Kuo, Alan; Lefebvre, Stephane C.; Maumus, Florian; Mayer, Christoph; Miller, John; Monier, Adam; Salamov, Asaf; Young, Jeremy; Aguilar, Maria; Claverie, Jean-Michel; Frickenhaus, Stephan; Gonzalez, Karina; Herman, Emily K.; Lin, Yao-Cheng; Napier, Johnathan; Ogata, Hiroyuki; Sarno, Analissa F.; Shmutz, Jeremy; Schroeder, Declan; de Vargas, Colomban; Verret, Frederic; von Dassow, Peter; Valentin, Klaus; Van de Peer, Yves; Wheeler, Glen; Dacks, Joel B.; Delwiche, Charles F.; Dyhrman, Sonya T.; Gloeckner, Gernot; John, Uwe; Richards, Thomas; Worden, Alexandra Z.; Zhang, Xiaoyu; Grigoriev, Igor V.; Allen, Andrew E.; Bidle, Kay; Borodovsky, M.; Bowler, C.; Brownlee, Colin; Cock, J. Mark; Elias, Marek; Gladyshev, Vadim N.; Groth, Marco; Guda, Chittibabu; Hadaegh, Ahmad; Iglesias-Rodriguez, Maria Debora; Jenkins, J.; Jones, Bethan M.; Lawson, Tracy; Leese, Florian; Lindquist, Erika; Lobanov, Alexei; Lomsadze, Alexandre; Malik, Shehre-Banoo; Marsh, Mary E.; Mackinder, Luke; Mock, Thomas; Mueller-Roeber, Bernd; Pagarete, Antonio; Parker, Micaela; Probert, Ian; Quesneville, Hadi; Raines, Christine; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Richier, Sophie; Rokitta, Sebastian; Shiraiwa, Yoshihiro; Soanes, Darren M.; van der Giezen, Mark; Wahlund, Thomas M.; Williams, Bryony; Wilson, Willie; Wolfe, Gordon; Wurch, Louie L.Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.
