Browsing by Author "Sancy, Mamie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffect of Plasma Argon Pretreatment on the Surface Properties of AZ31 Magnesium Alloy(2023) Montero, Cecilia; Ramirez, Cristian Gino; Munoz, Lisa; Sancy, Mamie; Azocar, Manuel; Flores, Marcos; Artigas, Alfredo; Zagal, Jose H.; Zhou, Xiaorong; Monsalve, Alberto; Paez, MaritzaClimate change has evidenced the need to reduce carbon dioxide emissions into the atmosphere, and so for transport applications, lighter weight alloys have been studied, such as magnesium alloys. However, they are susceptible to corrosion; therefore, surface treatments have been extensively studied. In this work, the influence of argon plasma pretreatment on the surface properties of an AZ31 magnesium alloy focus on the enhancement of the reactivity of the surface, which was examined by surface analysis techniques, electrochemical techniques, and gravimetric measurements. The samples were polished and exposed to argon plasma for two minutes in order to activate the surface. Contact angle measurements revealed higher surface energy after applying the pretreatment, and atomic force microscopy showed a roughness increase, while X-Ray photoelectron spectroscopy showed a chemical change on the surface, where after pretreatment the oxygen species increased. Electrochemical measurements showed that surface pretreatment does not affect the corrosion mechanism of the alloy, while electrochemical impedance spectroscopy reveals an increase in the original thickness of the surface film. This increase is likely associated with the high reactivity that the plasma pretreatment confers to the surface of the AZ31 alloy, affecting the extent of oxide formation and, consequently, the increase in its protection capacity. The weight loss measurements support the effect of the plasma pretreatment on the oxide thickness since the corrosion rate of the pretreated AZ31 specimens was lower than that of those that did not receive the surface pretreatment.
- ItemOn the effect of simulated contamination of chlorides and sulfates on steel rebar corrosion: Electrochemical behavior and surface analysis(2022) Melo, Paula; Echague, Matias; Guerra, Carolina; Jin, Qingxu; Sancy, Mamie; Paul, AlvaroTo understand the effect of sulfate ions on the chloride-induced corrosion of reinforced concrete, this study focuses on the electrochemical behavior and surface analysis of standarded carbon steel that was exposed to simulated pore solutions, with different combinations of high and low chloride and sulfate concentrations. Linear scanning voltammetry and electrochemical impedance spectroscopy were used to monitor the corrosion reaction. Steel surface was characterized by X-ray photoelectron spectroscopy and field emission scanning electron mi-croscopy. Results indicate that the presence of sulfate affects the electrochemical behavior of steel corrosion at a low and high chloride concentration, where the capability of the corrosion protective layer was influenced by the increase of the sulfate and chloride content. Calcium carbonate deposits were observed at the surface of corroded samples, where higher precipitation of calcium carbonate crystals on carbon steel surface is associated with higher rates of localized corrosion.