Browsing by Author "Sanchez, D. Mata"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAn infrared FWHM-K2 correlation to uncover highly reddened quiescent black holes(2023) Cuneo, V. A.; Casares, J.; Padilla, M. Armas; Sanchez-Sierras, J.; Corral-Santana, J. M.; Maccarone, T. J.; Sanchez, D. Mata; Munoz-Darias, T.; Torres, M. A. P.; Vincentelli, F.Among the sample of Galactic transient X-ray binaries (SXTs) discovered to date, about 70 have been proposed as likely candidates to host a black hole. Yet, only 19 have been dynamically confirmed. Such a reliable confirmation requires phase-resolved spectroscopy of their companion stars, which is generally feasible when the system is in a quiescent state. However, since most of the SXT population lies in the galactic plane, which is strongly affected by interstellar extinction, their optical brightness during quiescence usually falls beyond the capabilities of the current instrumentation (R greater than or similar to 22). To overcome these limitations and thereby increase the number of confirmed Galactic black holes, a correlation between the full-width at half maximum (FWHM) of the H alpha line and the semi-amplitude of the donor's radial velocity curve (K-2) was presented in the past. Here, we extend the FWHM-K-2 correlation to the near-infrared (NIR), exploiting disc lines such as He I lambda 10830, Pa gamma, and Br gamma, in a sample of dynamically confirmed black-hole SXTs. We obtain K-2 = 0.22(3) FWHM, in good agreement with the optical correlation derived using H alpha. The similarity of the two correlations seems to imply that the widths of H alpha and the NIR lines are consistent in quiescence. When combined with information on orbital periods, the NIR correlation allows us to constrain the mass of the compact object of systems in quiescence by using single-epoch spectroscopy. We anticipate that this new correlation will give access to highly reddened black hole SXTs, which cannot be otherwise studied at optical wavelengths.
- ItemPanning for gold, but finding helium: Discovery of the ultra-stripped supernova SN 2019wxt from gravitational-wave follow-up observations(2023) Agudo, I.; Amati, L.; An, T.; Bauer, F. E.; Benetti, S.; Bernardini, M. G.; Beswick, R.; Bhirombhakdi, K.; de Boer, T.; Branchesi, M.; Brennan, S. J.; Brocato, E.; Caballero-Garcia, M. D.; Cappellaro, E.; Castro Rodriguez, N.; Castro-Tirado, A. J.; Chambers, K. C.; Chassande-Mottin, E.; Chaty, S.; Chen, T. -W.; Coleiro, A.; Covino, S.; D'Ammando, F.; D'Avanzo, P.; D'Elia, V.; Fiore, A.; Floers, A.; Fraser, M.; Frey, S.; Frohmaier, C.; Fulton, M.; Galbany, L.; Gall, C.; Gao, H.; Garcia-Rojas, J.; Ghirlanda, G.; Giarratana, S.; Gillanders, J. H.; Giroletti, M.; Gompertz, B. P.; Gromadzki, M.; Heintz, K. E.; Hjorth, J.; Hu, Y. -D.; Huber, M. E.; Inkenhaag, A.; Izzo, L.; Jin, Z. P.; Jonker, P. G.; Kann, D. A.; Kool, E. C.; Kotak, R.; Leloudas, G.; Levan, A. J.; Lin, C. -C.; Lyman, J. D.; Magnier, E. A.; Maguire, K.; Mandel, I.; Marcote, B.; Sanchez, D. Mata; Mattila, S.; Melandri, A.; Michalowski, M. J.; Moldon, J.; Nicholl, M.; Guelbenzu, A. Nicuesa; Oates, S. R.; Onori, F.; Orienti, M.; Paladino, R.; Paragi, Z.; Perez-Torres, M.; Pian, E.; Pignata, G.; Piranomonte, S.; Quirola-Vasquez, J.; Ragosta, F.; Rau, A.; Ronchini, S.; Rossi, A.; Sanchez-Ramirez, R.; Salafia, O. S.; Schulze, S.; Smartt, S. J.; Smith, K. W.; Sollerman, J.; Srivastav, S.; Starling, R. L. C.; Steeghs, D.; Stevance, H. F.; Tanvir, N. R.; Testa, V.; Torres, M. A. P.; Valeev, A.; Vergani, S. D.; Vescovi, D.; Wainscost, R.; Watson, D.; Wiersema, K.; Wyrzykowski, L.; Yang, J.; Yang, S.; Young, D. R.We present the results from multi-wavelength observations of a transient discovered during an intensive follow-up campaign of S191213g, a gravitational wave (GW) event reported by the LIGO-Virgo Collaboration as a possible binary neutron star merger in a low latency search. This search yielded SN 2019wxt, a young transient in a galaxy whose sky position (in the 80% GW contour) and distance (similar to SIM;150 Mpc) were plausibly compatible with the localisation uncertainty of the GW event. Initially, the transient's tightly constrained age, its relatively faint peak magnitude (M-i similar to -16.7 mag), and the r-band decline rate of similar to 1 mag per 5 days appeared suggestive of a compact binary merger. However, SN 2019wxt spectroscopically resembled a type Ib supernova, and analysis of the optical-near-infrared evolution rapidly led to the conclusion that while it could not be associated with S191213g, it nevertheless represented an extreme outcome of stellar evolution. By modelling the light curve, we estimated an ejecta mass of only similar to 0.1 M circle dot, with Ni-56 comprising similar to 20% of this. We were broadly able to reproduce its spectral evolution with a composition dominated by helium and oxygen, with trace amounts of calcium. We considered various progenitor channels that could give rise to the observed properties of SN 2019wxt and concluded that an ultra-stripped origin in a binary system is the most likely explanation. Disentangling genuine electromagnetic counterparts to GW events from transients such as SN 2019wxt soon after discovery is challenging: in a bid to characterise this level of contamination, we estimated the rate of events with a volumetric rate density comparable to that of SN 2019wxt and found that around one such event per week can occur within the typical GW localisation area of O4 alerts out to a luminosity distance of 500 Mpc, beyond which it would become fainter than the typical depth of current electromagnetic follow-up campaigns.
