• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Saldías Fuentes, Belén Carolina"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A full probabilistic model for yes/no type crowdsourcing in multi-class classification
    (2017) Saldías Fuentes, Belén Carolina; Pichara Baksai, Karim Elías; Pontificia Universidad Católica de Chile. Escuela de Ingeniería
    Crowdsourcing se ha convertido en una técnica ampliamente adoptada en escenarios donde los conjuntos de entrenamiento para modelos supervisados son escasos y difíciles de obtener. La mayoría de los modelos de crowdsourcing en la literatura asumen que los anotadores pueden proporcionar respuestas para preguntas completas, éstas se refieren a preguntarle a un anotador que discierna entre todas las clases posibles para un objeto. Desafortunadamente, ese discernimiento no siempre es fácil en escenarios realistas, pueden haber muchas clases donde se desconoce cómo diferenciarlas. En este trabajo, se propone un modelo probabilístico para un tipo más corto y fácil de preguntas. Estas preguntas más simples sólo requieren una respuesta del tipo “sí” o “no”. Este modelo estima una distribución posterior conjunta de matrices relacionadas con las confusiones y errores de los anotadores, además de la probabilidad posterior de la clase de cada objeto. La solución se lleva a cabo mediante inferencia aproximada, se usa en primer lugar muestreo de Monte Carlo y en segundo lugar el método de Inferencia Variacional como Caja Negra (BBVI). Para este último enfoque se provee la derivación de los gradientes necesarios para la aproximación del modelo. Se construyeron dos escenarios web reales de crowdsourcing, donde anotadores fueron invitados a participar. En el primer escenario se muestran series de tiempo astronómicas a ingenieros y astrónomos. El segundo escenario se basa en clasificación de animales mediante la observación de imágenes. Los resultados muestran que es posible lograr resultados comparables con la pregunta completa para clasificación en crowdsourcing. Además, se prueba que tomar muestras de cómo los anotadores se equivocan al responder preguntas es importante para la convergencia del modelo. Finalmente, se deja disponible para la comunidad los dos conjuntos de datos obtenidos desde los experimentos reales generados. Todo el código está públicamente disponible.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback