• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sainz, J"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Modeling of yeast metabolism and process dynamics in batch fermentation
    (JOHN WILEY & SONS INC, 2003) Sainz, J; Pizarro, F; Perez Correa, JR; Agosin, E
    Much is known about yeast metabolism and the kinetics of industrial batch fermentation processes. In this study, however, we provide the first tool to evaluate the dynamic interaction that exists between them. A stoichiometric model, using wine fermentation as a case study, was constructed to simulate batch cultures of Saccharomyces cerevisiae. Five differential equations describe the evolution of the main metabolites and biomass in the fermentation tank, while a set of underdetermined linear algebraic equations models the pseudo-steady-state microbial metabolism. Specific links between process variables and the reaction rates of metabolic pathways represent microorganism adaptation to environmental changes in the culture. Adaptation requirements to changes in the environment, optimal growth, and homeostasis were set as the physiological objectives. A linear programming routine was used to define optimal metabolic mass flux distribution at each instant throughout the process. The kinetics of the process arise from the dynamic interaction between the environment and metabolic flux distribution. The model assessed the effect of nitrogen starvation and ethanol toxicity in wine fermentation and it was able to simulate fermentation profiles qualitatively, while experimental fermentation yields were reproduced successfully as well. (C) 2003 Wiley Periodicals, Inc.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback