Browsing by Author "Saez, Pablo J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Itemc-Abl Activation Linked to Autophagy-Lysosomal Dysfunction Contributes to Neurological Impairment in Niemann-Pick Type A Disease(2022) Marin, Tamara; Dulcey, Andres E.; Campos, Fabian; de la Fuente, Catalina; Acuna, Mariana; Castro, Juan; Pinto, Claudio; Yanez, Maria Jose; Cortez, Cristian; McGrath, David W.; Saez, Pablo J.; Gorshkov, Kirill; Zheng, Wei; Southall, Noel; Carmo-Fonseca, Maria; Marugan, Juan; Alvarez, Alejandra R.; Zanlungo, SilvanaNiemann-Pick type A (NPA) disease is a fatal lysosomal neurodegenerative disorder caused by the deficiency in acid sphingomyelinase (ASM) activity. NPA patients present severe and progressive neurodegeneration starting at an early age. Currently, there is no effective treatment for this disease and NPA patients die between 2 and 3 years of age. NPA is characterized by an accumulation of sphingomyelin in lysosomes and dysfunction in the autophagy-lysosomal pathway. Recent studies show that c-Abl tyrosine kinase activity downregulates autophagy and the lysosomal pathway. Interestingly, this kinase is also activated in other lysosomal neurodegenerative disorders. Here, we describe that c-Abl activation contributes to the mechanisms of neuronal damage and death in NPA disease. Our data demonstrate that: 1) c-Abl is activated in-vitro as well as in-vivo NPA models; 2) imatinib, a clinical c-Abl inhibitor, reduces autophagy-lysosomal pathway alterations, restores autophagy flux, and lowers sphingomyelin accumulation in NPA patient fibroblasts and NPA neuronal models and 3) chronic treatment with nilotinib and neurotinib, two c-Abl inhibitors with differences in blood-brain barrier penetrance and target binding mode, show further benefits. While nilotinib treatment reduces neuronal death in the cerebellum and improves locomotor functions, neurotinib decreases glial activation, neuronal disorganization, and loss in hippocampus and cortex, as well as the cognitive decline of NPA mice. Our results support the participation of c-Abl signaling in NPA neurodegeneration and autophagy-lysosomal alterations, supporting the potential use of c-Abl inhibitors for the clinical treatment of NPA patients.
- ItemHuman mesenchymal stem cells derived from adipose tissue reduce functional and tissue damage in a rat model of chronic renal failure(2013) Villanueva, Sandra; Carreno, Juan E.; Salazar, Lorena; Vergara, Cesar; Strodthoff, Rocio; Fajre, Francisca; Cespedes, Carlos; Saez, Pablo J.; Irarrazabal, Carlos; Bartolucci, Jorge; Figueroa, Fernando; Vio, Carlos P.Therapeutic approaches for CKD (chronic kidney disease) have been able to reduce proteinuria, but not diminish the disease progression. We have demonstrated beneficial effects by injection of BM (bone marrow)-derived MSCs (mesenchymal stem cells) from healthy donors in a rat model with CKD. However, it has recently been reported that BM-MSCs derived from uraemic patients failed to confer functional protection in a similar model. This suggests that autologous BM-MSCs are not suitable for the treatment of CKD. In the present study, we have explored the potential of MSCs derived from adipose tissue (AD-MSCs) as an alternative source of MSCs for the treatment of CKD. We have isolated AD-MSCs and evaluated their effect on the progression of CKD. Adult male SD (Sprague Dawley) rats subjected to 5/6 NPX (nephrectomy) received a single intravenous infusion of 0.5 x 10(6) AD-MSCs or MSC culture medium alone. The therapeutic effect was evaluated by plasma creatinine measurement, structural analysis and angiogenic/epitheliogenic protein expression. AD-MSCs were detected in kidney tissues from NPX animals. This group had a significant reduction in plasma creatinine levels and a lower expression of damage markers ED-1 and alpha-SMA (alpha-smooth muscle actin) (P < 0.05). In addition, treated rats exhibited a higher level of epitheliogenic [Pax-2 and BMP-7 (bone morphogenetic protein 7)] and angiogenic [VEGF (vascular endothelial growth factor)] proteins. The expression of these biomarkers of regeneration was significantly related to the improvement in renal function. Although many aspects of the cell therapy for CKD remain to be investigated, we provide evidence that AD-MSCs, a less invasive and highly available source of MSCs, exert an important therapeutic effect in this pathology.