• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ruiz, S"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Effects of mild protein prenatal malnutrition and subsequent postnatal nutritional rehabilitation on noradrenaline release and neuronal density in the rat occipital cortex
    (1999) Soto-Moyano, R; Fernandez, V; Sanhueza, M; Belmar, J; Kusch, C; Perez, H; Ruiz, S; Hernandez, A
    There is evidence that severe malnutrition started during gestation and continued through lactation affects adversely the morphologic development of the neocortex leading to increased neuronal cell packing density and decreased dendritic branching. Nevertheless, the effect of purely mild protein prenatal malnutrition on neocortical development remains rather unexplored. This study evaluates the effects of mild protein prenatal malnutrition (8% casein diet, calorically compensated by carbohydrates) and subsequent postnatal nutritional rehabilitation (25% casein diet) on: (i) the potassium-induced release of [H-3]-noradrenaline (NA) in occipital cortex slices obtained from 1- and 22-day-old pups; and (ii) the packing density of neurons in lateral, dorso-lateral and dorsal regions of the occipital cortex of 22-day-old pups by using the optical dissector method. The experiments were performed in rats normally fed during gestation and lactation (G(+)L(+)), malnourished during gestation but rehabilitated during lactation (G(-)L(+)) and malnourished during gestation and lactation (G(-)L(-)). At day 1 of age, no significant differences in body and brain weights were observed between prenatally well-nourished and malnourished pups. Nevertheless, at this early age, pups born from mothers submitted to the 8% casein diet had significantly higher cortical net percent NA release than pups born from mothers receiving the 25% casein diet. At weaning (22 days of age) G(-)L(+) rats had, compared to the G(+)L(+) group, similar body weight, brain weight and [H-3]-NA release values, but significantly higher neuron density scores in the lateral region of the occipital cortex. In contrast, at 22 days of age, G(-)L(-) rats exhibited, compared to G(+)L(+) animals, significant deficits in body and brain weights as well as significant increases in cortical net percent NA release together with enhanced packing density of neurons in the lateral, dorso-lateral and dorsal regions of the occipital cortex. Moreover, in G(-)L(-) animals was not found the laterodorsal histogenetic gradient of neuronal cell packing density observed in G(+)L(+) rats. Results suggest that mild prenatal malnutrition per se is able to induce deleterious effects on cortical neuronal density, in spite of nutritional rehabilitation during lactation, through a mechanism involving central NA hyperactivity during gestation. Prosecution of malnutrition after birth magnifies both neurochemical and morphometric disorders. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Prenatal malnutrition-induced functional alterations in callosal connections and in interhemispheric asymmetry in rats are prevented by reduction of noradrenaline synthesis during gestation
    (1998) Soto-Moyano, R; Alarcon, S; Hernández, A; Pérez, H; Ruiz, S; Carreño, P; Kusch, C; Belmar, J
    Prenatal malnutrition results in increased concentration and release of central noradrenaline, a neurotransmitter that is an important regulator of normal regressive events such as axonal pruning and synaptic elimination. This suggests that some of the functional disturbances in brain induced by prenatal malnutrition could be due at least in part to increased noradrenaline activity that may enhance regressive events during early stages of development. To test this hypothesis we studied whether chronic administration of alpha-methyl-p-tyrosine, an inhibitor of tyrosine hydroxylase, to rats during gestation might prevent long-term deleterious effects of prenatal malnutrition on functional properties of interhemispheric connections of the visual cortex, and on asymmetry of visual evoked responses. The experiments were conducted on normal and malnourished rats 45-50 d of age. Prenatal malnutrition was induced by restricting the food consumption of pregnant rats to 40%, from d 8 postconception to parturition. At birth, prenatally malnourished rats had significantly greater whole-brain noradrenaline concentration as well as significantly enhanced noradrenaline release in the visual cortex. At 45-50 d of age, the malnourished group had a significantly smaller cortical area, exhibiting transcallosal evoked responses; in addition, the amplitude of these responses was significantly smaller. Malnourished rats showed a significant reduction of the normal interhemispheric asymmetry of visual evoked responses. The addition of 0.3% alpha-methyl-p-tyrosine to the diet of malnourished pregnant rats during the last 2 wk of gestation prevented functional disorders induced in the offspring by prenatal malnutrition on interhemispheric connectivity of visual areas and on interhemispheric bioelectrical asymmetry, probably by reducing the elevated brain noradrenaline activity and thereby restoring the normal trophic role of this neurotransmitter.
  • No Thumbnail Available
    Item
    Prenatal protein restriction alters synaptic mechanisms of callosal connections in the rat visual cortex
    (1998) Soto-Moyano, R; Alarcón, S; Belmar, J; Kusch, C; Pérez, H; Ruiz, S; Hernández, A
    Mild prenatal protein malnutrition, induced by reduction of the casein content of the maternal diet from 25 to 8%, calorically compensated by the addition of excess carbohydrates, leads to so-called "hidden" malnutrition in the rat. This form of malnutrition results in normal body and brain weights of pups at birth, but in significant alterations of their central nervous system neurochemical profiles. Since severe forms of prenatal malnutrition induce morpho-functional deficits on callosal interhemispheric communication together with brain neurochemical disturbances, we evaluated, in rats born from mothers submitted to an 8% casein diet, the potassium-induced release of [H-3]-noradrenaline in visual cortex slices, as well as functional properties of callosal-cortical synapses by determining cerebral cortical excitability to callosal inputs and fatigability and temporal summation of transcallosal evoked responses. Rats born from mothers submitted to a 25% casein diet served as controls. At birth prenatally malnourished pups had significantly higher cortical percent net noradrenaline release (14.79+/-1.11) than controls (9.14+/-1.26). At 45-50 days of age, rehabilitated previously malnourished rats showed, when compared to controls: (i) significantly reduced percent net noradrenaline release in the visual cortex (4.50+/-0.52 vs 11.31+/-1.14); (ii) decreased cortical excitability to callosal inputs as revealed by significantly increased chronaxie (607.2+/-82.8 mu s vs 351.3+/-47.7 mu s); (iii) enhanced fatigability of transcallosal evoked responses as revealed by significantly decreased stimulus frequency required to fatigate the responses (4.9+/-0.8 Hz vs 9.2+/-1.3 Hz); and (iv) decreased ability of callosal-cortical synapses to perform temporal summation, as revealed by significantly reduced percent response increment to double-shock (54.2+/-6.2 vs 83.0 +/- 11.0, for a 3.2-ms interstimulus time interval). These changes, resulting from mild prenatal protein restriction, are discussed in relationship to developmental processes leading to the formation of synaptic contacts between callosal axons and their appropriate cortical target during perinatal age. (C) 1998 ISDN. Published by Elsevier Science Ltd.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback