Browsing by Author "Rudge, Timothy J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA computational framework for testing hypotheses of the minimal mechanical requirements for cell aggregation using early annual killifish embryogenesis as a model(FRONTIERS MEDIA SA, 2023) Montenegro-Rojas, Ignacio; Yanez, Guillermo; Skog, Emily; Guerrero-Calvo, Oscar; Andaur-Lobos, Martin; Dolfi, Luca; Cellerino, Alessandro; Cerda, Mauricio; Concha, Miguel L.; Bertocchi, Cristina; Rojas, Nicolas O.; Ravasio, Andrea; Rudge, Timothy J.Introduction: Deciphering the biological and physical requirements for the outset of multicellularity is limited to few experimental models. The early embryonic development of annual killifish represents an almost unique opportunity to investigate de novo cellular aggregation in a vertebrate model. As an adaptation to seasonal drought, annual killifish employs a unique developmental pattern in which embryogenesis occurs only after undifferentiated embryonic cells have completed epiboly and dispersed in low density on the egg surface. Therefore, the first stage of embryogenesis requires the congregation of embryonic cells at one pole of the egg to form a single aggregate that later gives rise to the embryo proper. This unique process presents an opportunity to dissect the self-organizing principles involved in early organization of embryonic stem cells. Indeed, the physical and biological processes required to form the aggregate of embryonic cells are currently unknown., Methods: Here, we developed an in silico, agent-based biophysical model that allows testing how cell-specific and environmental properties could determine the aggregation dynamics of early Killifish embryogenesis. In a forward engineering approach, we then proceeded to test two hypotheses for cell aggregation (cell-autonomous and a simple taxis model) as a proof of concept of modeling feasibility. In a first approach (cell autonomous system), we considered how intrinsic biophysical properties of the cells such as motility, polarity, density, and the interplay between cell adhesion and contact inhibition of locomotion drive cell aggregation into self-organized clusters. Second, we included guidance of cell migration through a simple taxis mechanism to resemble the activity of an organizing center found in several developmental models., Results: Our numerical simulations showed that random migration combined with low cell-cell adhesion is sufficient to maintain cells in dispersion and that aggregation can indeed arise spontaneously under a limited set of conditions, but, without environmental guidance, the dynamics and resulting structures do not recapitulate in vivo observations., Discussion: Thus, an environmental guidance cue seems to be required for correct execution of early aggregation in early killifish development. However, the nature of this cue (e.g., chemical or mechanical) can only be determined experimentally. Our model provides a predictive tool that could be used to better characterize the process and, importantly, to design informed experimental strategies.
- ItemAccurate characterization of dynamic microbial gene expression and growth rate profiles(2022) Vidal, Gonzalo; Vidal-Cespedes, Carlos; Silva, Macarena Munoz; Castillo-Passi, Carlos; Feliu, Guillermo Yanez; Federici, Fernan; Rudge, Timothy J.Genetic circuits are subject to variability due to cellular and compositional contexts. Cells face changing internal states and environments, the cellular context, to which they sense and respond by changing their gene expression and growth rates. Furthermore, each gene in a genetic circuit operates in a compositional context of genes which may interact with each other and the host cell in complex ways. The context of genetic circuits can, therefore, change gene expression and growth rates, and measuring their dynamics is essential to understanding natural and synthetic regulatory networks that give rise to functional phenotypes. However, reconstruction of microbial gene expression and growth rate profiles from typical noisy measurements of cell populations is difficult due to the effects of noise at low cell densities among other factors. We present here a method for the estimation of dynamic microbial gene expression rates and growth rates from noisy measurement data. Compared to the current state-of-the-art, our method significantly reduced the mean squared error of reconstructions from simulated data of growth and gene expression rates, improving the estimation of timing and magnitude of relevant shapes of profiles. We applied our method to characterize a triple-reporter plasmid library combining multiple transcription units in different compositional and cellular contexts in Escherichia coli. Our analysis reveals cellular and compositional context effects on microbial growth and gene expression rate dynamics and suggests a method for the dynamic ratiometric characterization of constitutive promoters relative to an in vivo reference.
- ItemLOICA: Integrating Models with Data for Genetic Network Design Automation(2022) Vidal, Gonzalo; Vidal-Cespedes, Carlos; Rudge, Timothy J.Genetic design automation tools are necessary to expand the scale and complexity of possible synthetic genetic networks. These tools are enabled by abstraction of a hierarchy of standardized components and devices. Abstracted elements must be parametrized from data derived from relevant experiments, and these experiments must be related to the part composition of the abstract components. Here we present Logical Operators for Integrated Cell Algorithms (LOICA), a Python package for designing, modeling, and characterizing genetic networks based on a simple object-oriented design abstraction. LOICA uses classes to represent different biological and experimental components, which generate models through their interactions. These models can be parametrized by direct connection to data contained in Flapjack so that abstracted components of designs can characterize themselves. Models can be simulated using continuous or stochastic methods and the data published and managed using Flapjack. LOICA also outputs SBOL3 descriptions and generates graph representations of genetic network designs.