Browsing by Author "Rubio Achondo, Felipe Andrés"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemControl predictivo basado en secuencia de conmutación óptima para un conversor de tres puertos aplicado a vehículos eléctricos(2024) Rubio Achondo, Felipe Andrés; Pereda Torres, Javier; Pontificia Universidad Católica de Chile. Escuela de IngenieríaMulti-port power converters have a very important role today because they are used used in electromobility applications and hybrid energy storage systems (HESS). However, their optimal operation requires advanced control techniques due to the handling of multiple variables simultaneously. This thesis presents the development of an Optimal Switching Sequence (OSS) model predictive control (MPC) method applied to a three-port converter (TPC), which has been connected to an anisotropic permanent magnet synchronous machine (PMSM) and two dc voltage sources (VS). Based on a review of TPCs, classical control methods and MPC methods, the converter used with its mathematical formulation is presented. Then, theoretical principles of vector modulation and the machine for the design of the current controller are presented. The latter is based on two steps, the first one uses the dynamic model of the machine to find the optimal seven-segment witching sequence (7S-SS) that reduces the value of an objective function without using weighting factors and the second one uses the redundant vectors (zero vectors) optimally distributed to control the current in another of the ports.The results validate the method by experimental and simulation tests. The strategy presents a defined harmonic distortion, without sacrificing the dynamic response. In addi tion, an implementation with asymmetric modulation reduces the tracking error by 65.36% and a delay compensation reduces it by 92%. Furthermore, the new strategy manages to reduce the optimization problems to be solved by the steady-state algorithm from 6 to 1. Thus, the proposed control becomes attractive for implementation in real hybrid sys tems, which impose challenges of durability, versatility and reliability to the electrical system.
- ItemOptimal Switching Sequence MPC of a Three-Port-Converter for Variable-Speed PMSM with Hybrid Energy Storage(Institute of Electrical and Electronics Engineers Inc., 2024) Rubio Achondo, Felipe Andrés; Pereda Torres, Javier; Mora, Andrés; Rojas Lobos, Félix EduardoThis article presents a model predictive current control strategy utilizing optimal switching sequences for two-level, three-port converters driving an anisotropic permanent magnet synchronous machine (PMSM). These converters are attractive in hybrid energy systems, including fuel cell electric vehicles and hybrid energy storage systems. The proposed control method optimally calculates the switching vectors and duty cycles for both steady-state and transient conditions, including during overmodulation, a scenario that introduces significant optimization challenges. The strategy proposes a simple second stage of control to govern the dc port current, exploiting the redundancy of passive vectors, and eliminating the need for weighting factors to balance the control objectives between the PMSM and the energy storage system, giving absolute priority to the control of the PMSM. Experimental results on a laboratory-scale prototype demonstrate the controller high-dynamic performance in regulating torque, speed, and power transfer across multiple ports, while also maintaining a fixed switching frequency and a well-defined harmonic spectrum.