• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Romero-Tapia, Sergio de Jesus"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Early Prediction of Asthma
    (MDPI, 2023) Romero-Tapia, Sergio de Jesus; Becerril-Negrete, Jose Raul; Castro Rodriguez, José Antonio; Del-Rio-Navarro, Blanca E.
    The clinical manifestations of asthma in children are highly variable, are associated with different molecular and cellular mechanisms, and are characterized by common symptoms that may diversify in frequency and intensity throughout life. It is a disease that generally begins in the first five years of life, and it is essential to promptly identify patients at high risk of developing asthma by using different prediction models. The aim of this review regarding the early prediction of asthma is to summarize predictive factors for the course of asthma, including lung function, allergic comorbidity, and relevant data from the patient's medical history, among other factors. This review also highlights the epigenetic factors that are involved, such as DNA methylation and asthma risk, microRNA expression, and histone modification. The different tools that have been developed in recent years for use in asthma prediction, including machine learning approaches, are presented and compared. In this review, emphasis is placed on molecular mechanisms and biomarkers that can be used as predictors of asthma in children.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback