• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Romero, Rurik"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Episodic construction of the early Andean Cordillera unravelled by zircon petrochronology
    (2021) Jara, Jose Joaquin; Barra, Fernando; Reich, Martin; Leisen, Mathieu; Romero, Rurik; Morata, Diego
    The subduction of oceanic plates beneath continental lithosphere is responsible for continental growth and recycling of oceanic crust, promoting the formation of Cordilleran arcs. However, the processes that control the evolution of these Cordilleran orogenic belts, particularly during their early stages of formation, have not been fully investigated. Here we use a multi-proxy geochemical approach, based on zircon petrochronology and whole-rock analyses, to assess the early evolution of the Andes, one of the most remarkable continental arcs in the world. Our results show that magmatism in the early Andean Cordillera occurred over a period of similar to 120 million years with six distinct plutonic episodes between 215 and 94 Ma. Each episode is the result of a complex interplay between mantle, crust, slab and sediment contributions that can be traced using zircon chemistry. Overall, the magmatism evolved in response to changes in the tectonic configuration, from transtensional/extensional conditions (215-145 Ma) to a transtensional regime (138-94 Ma). We conclude that an external (tectonic) forcing model with mantle-derived inputs is responsible for the episodic plutonism in this extensional continental arc. This study highlights the use of zircon petrochronology in assessing the multimillion-year crustal scale evolution of Cordilleran arcs.
  • No Thumbnail Available
    Item
    Geochronology and petrogenesis of intrusive rocks in the Coastal Cordillera of northern Chile: Insights from zircon U-Pb dating and trace element geochemistry
    (2021) Joaquin Jara, Jose; Barra, Fernando; Reich, Martin; Morata, Diego; Leisen, Mathieu; Romero, Rurik
    Two models have been proposed to explain the early Andean evolution of the southwestern margin of Gondwana; a model that assumes continuous subduction-related magmatism since the Carboniferous and a second involving subduction cessation during the pre-Andean stage (similar to 280-200 Ma) followed by subsequent reactivation at ca. 200 Ma. Here we provide new constraints regarding the onset of the Andean tectonic cycle and the transition between pre-Andean and early Andean stages (210-100 Ma) by performing a comprehensive study of the geochronology and petrogenesis of plutonic complexes from the Coastal Cordillera of northern Chile. We present the first zircon U-Pb geochronology and trace element dataset of intrusive rocks combined with whole-rock geochemistry for the early Andean stage. The oldest unit identified is a syenogranite dated at 246.7 +/- 3.9 Ma with a subduction signature, i.e., slightly peraluminous, enriched in LILE over HFSE, negative Nb-Ta and positive Pb anomalies, and strong REE fractionation, but also shows anorogenic features with an alkali-rich composition and high enrichment in rare earth and HFS elements compared to chondritic values. These characteristics are interpreted as representing a transitional, anorogenic event from the pre-Andean stage. In contrast, the second oldest magmatic eventwas dated at 211.4 +/- 1.2Ma and has a chemical composition consistent with Andean-related magmatismand its zircon composition is similar to those fromLate Triassic-Early Cretaceous units. Consequently, we conclude that the Andean orogeny started at ca. 210 Ma, before earlier estimates. Our study also supportsworks that indicate episodic high-flux magmatism and the eastward migration of themagmatic arc during the Mesozoic. Furthermore, the whole-rock Th/Yb and zircon U/Yb ratios show a trend fromthe Late Triassic to Late Jurassic of increasing depletion of themantle source. However, during the Early Cretaceous more variable and enriched signatures are observed, possibly related to changes in the tectonic regime. (C) 2021 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
  • No Thumbnail Available
    Item
    Origin of carbonatite-related niobium deposits: Insights from pyrochlore geochemistry
    (2024) Velasquez-Ruiz, Felipe; Reich, Martin; Broom-Fendley, Sam; Beard, Charles D.; Barra, Fernando; Romero, Rurik; Cordeiro, Pedro
    The carbonatite-related Nb deposits of the Alto Parana & iacute;ba Igneous Province (APIP) in central Brazil, currently account for similar to 92 % of the global Nb production. In the APIP, pyrochlore is abundant in magnet-ite-apatite-tetraferriphlogopite +/- carbonate rocks or phoscorites, occurring as interbedded layers with carbo-natites in the lower hypogene zone, feeding dike swarms of phoscorite and calcite carbonatite, and late-stage carbothermal veins in the upper hypogene zone. The origin of the phoscorite-carbonatite association can be explained by three hypotheses: (1) crystal segregation from fractional crystallization, (2) liquid immiscibility, and/or (3) phoscoritic magma formation after basement metasomatism (fenitization). However, it is not well understood whether pyrochlore formation is limited to a carbonatitic event, carbohydrothermal, or both, and this gap of knowledge is addressed in this work. To investigate the petrogenesis of pyrochlore-rich phoscorite, cathodoluminescence (CL) images, chemical maps, and LA-ICP-MS data were acquired of pyrochlore crystals from magmatic and carbothermal rocks from the Boa Vista Nb mine, Catalao II Complex. In the Boa Vista mine, oscillatory and patchy zoning were identified as primary pyrochlore textures commonly recorded at the lower hypogene zone, while secondary dissolution, skeletal and zonation-free textures are registered at shallower depths in the upper hypogene zone. Calciopyrochlore is the dominant Nb phase at the Boa Vista mine, with only two kenopyrochlore outliers. The pyrochlore CI chondrite-normalized REE distribution is consistent with geochemical results of the carbonatite and phoscorite rocks, indicating a magmatic origin for pyrochlore and the presence of pyrochlore antecrysts in carbothermal veins. The Sr/Y vs La and Na vs Ce diagrams in pyrochlore indicate a continuous fractionation pattern, with some mixtures of antecrysts and primary phases. An exami-nation of intercumulus calcite using CL provide evidence of carbonatitic magma residues within tetraferri-phlogopite phoscorite dikes and suggests that alkaline-carbonate-rich fluids played a role in transporting heavy minerals (i.e., magnetite, apatite, pyrochlore). Consequently, the textural and chemical evidence in the Boa Vista Nb mine indicates that the origin of pyrochlore-rich phoscorites is the result of physical segregation of heavy minerals from a carbonatite magma by fractional crystallization, leading to the emplacement of pyrochlore-rich carbonatite and phoscorite dikes. The implications at Catalao II may extend to other APIP alkaline-carbonatite complexes, as they share a genetic connection, and should motivate further studies focusing on pyrochlore geochemistry in other carbonatite-related Nb deposits, which will be crucial for advancing our knowledge of global Nb metallogenesis.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback