Browsing by Author "Roman-Lopes, Alexandre"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemAPOGEE chemical abundances of globular cluster giants in the inner Galaxy(2017) Schiavon, Ricardo P.; Johnson, Jennifer A.; Frinchaboy, Peter M.; Zasowski, Gail; Meszaros, Szabolcs; Garcia-Hernandez, D. A.; Cohen, Roger E.; Tang, Baitian; Villanova, Sandro; Geisler, Douglas; Beers, Timothy C.; Fernandez-Trincado, J. G.; Garcia Perez, Ana E.; Lucatello, Sara; Majewski, Steven R.; Martell, Sarah L.; O'Connell, Robert W.; Allende Prieto, Carlos; Bizyaev, Dmitry; Carrera, Ricardo; Lane, Richard R.; Malanushenko, Elena; Malanushenko, Viktor; Munoz, Ricardo R.; Nitschelm, Christian; Oravetz, Daniel; Pan, Kaike; Roman-Lopes, Alexandre; Schultheis, Matthias; Simmons, AudreyWe report chemical abundances obtained by Sloan Digital Sky Survey (SDSS)-III/Apache Point Observatory Galactic Evolution Experiment for giant stars in five globular clusters located within 2.2 kpc of the Galactic Centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, Terzan 5 and Palomar 6) and find strong evidence for their presence in NGC 6522. All clusters with a large enough sample present a significant spread in the abundances of N, C, Na and Al, with the usual correlations and anticorrelations between various abundances seen in other globular clusters. Our results provide important quantitative constraints on theoretical models for self-enrichment of globular clusters, by testing their predictions for the dependence of yields of elements such as Na, N, C and Al on metallicity. They also confirm that, under the assumption that field N-rich stars originate from globular cluster destruction, they can be used as tracers of their parental systems in the high-metallicity regime.
- ItemExploring the Galactic Warp through Asymmetries in the Kinematics of the Galactic Disk(2020) Cheng, Xinlun; Anguiano, Borja; Majewski, Steven R.; Hayes, Christian; Arras, Phil; Chiappini, Cristina; Hasselquist, Sten; Queiroz, Anna Barbara de Andrade; Nitschelm, Christian; Anibal Garcia-Hernandez, Domingo; Lane, Richard R.; Roman-Lopes, Alexandre; Frinchaboy, Peter M.Previous analyses of large databases of Milky Way stars have revealed the stellar disk of our Galaxy to be warped and that this imparts a strong signature on the kinematics of stars beyond the solar neighborhood. However, due to the limitation of accurate distance estimates, many attempts to explore the extent of these Galactic features have generally been restricted to a volume near the Sun. By combining the Gaia DR2 astrometric solution, StarHorse distances, and stellar abundances from the APOGEE survey, we present the most detailed and radially expansive study yet of the vertical and radial motions of stars in the Galactic disk. We map velocities of stars with respect to their Galactocentric radius, angular momentum, and azimuthal angle and assess their relation to the warp. A decrease in vertical velocity is discovered at Galactocentric radius R = 13 kpc and angular momentum L-z = 2800 kpc km s(-1). Smaller ripples in vertical and radial velocity are also discovered superposed on the main trend. We also discovered that trends in the vertical velocity with azimuthal angle are not symmetric about the peak, suggesting the warp is lopsided. To explain the global trend in vertical velocity, we built a simple analytical model of the Galactic warp. Our best fit yields a starting radius of 8.87(-0.09)(+0.08) kpc and precession rate of 13.57(-0.18)(+0.20) km s(-1) kpc(-1). These parameters remain consistent across stellar age groups, a result that supports the notion that the warp is the result of an external, gravitationally induced phenomenon.
- ItemExploring the Stellar Age Distribution of the Milky Way Bulge Using APOGEE(2020) Hasselquist, Sten; Zasowski, Gail; Feuillet, Diane K.; Schultheis, Mathias; Nataf, David M.; Anguiano, Borja; Beaton, Rachael L.; Beers, Timothy C.; Cohen, Roger E.; Cunha, Katia; Fernandez-Trincado, Jose G.; Garcia-Hernandez, D. A.; Geisler, Doug; Holtzman, Jon A.; Johnson, Jennifer; Lane, Richard R.; Majewski, Steven R.; Bidin, Christian Moni; Nitschelm, Christian; Roman-Lopes, Alexandre; Schiavon, Ricardo; Smith, Verne V.; Sobeck, JenniferWe present stellar age distributions of the Milky Way bulge region using ages for similar to 6000 high-luminosity (log (g), metal-rich ([Fe/H] >= -0.5) bulge stars observed by the Apache Point Observatory Galactic Evolution Experiment. Ages are derived using The Cannon label-transfer method, trained on a sample of nearby luminous giants with precise parallaxes for which we obtain ages using a Bayesian isochrone-matching technique. We find that the metal-rich bulge is predominantly composed of old stars (>8 Gyr). We find evidence that the planar region of the bulge (vertical bar Z(GC)vertical bar <= 0.25 kpc) is enriched in metallicity, Z, at a faster rate (dZ/dt similar to 0.0034 Gyr(-1)) than regions farther from the plane (dZ/dt similar to 0.0013 Gyr(-1) at vertical bar Z(GC)vertical bar > 1.00 kpc). We identify a nonnegligible fraction of younger stars (age similar to 2-5 Gyr) at metallicities of +0.2 < [Fe/H] < +0.4. These stars are preferentially found in the plane (vertical bar Z(GC)vertical bar <= 0.25 kpc) and at R-cy approximate to 2-3 kpc, with kinematics that are more consistent with rotation than are the kinematics of older stars at the same metallicities. We do not measure a significant age difference between stars found inside and outside the bar. These findings show that the bulge experienced an initial starburst that was more intense close to the plane than far from the plane. Then, star formation continued at supersolar metallicities in a thin disk at 2 kpc less than or similar to R-cy less than or similar to 3 kpc until similar to 2 Gyr ago.
- ItemFinal Targeting Strategy for the SDSS-IV APOGEE-2S Survey(2021) Santana, Felipe A.; Beaton, Rachael L.; Covey, Kevin R.; O'Connell, Julia E.; Longa-Pena, Penelope; Cohen, Roger; Fernandez-Trincado, Jose G.; Hayes, Christian R.; Zasowski, Gail; Sobeck, Jennifer S.; Majewski, Steven R.; Chojnowski, S. D.; De Lee, Nathan; Oelkers, Ryan J.; Stringfellow, Guy S.; Almeida, Andres; Anguiano, Borja; Donor, John; Frinchaboy, Peter M.; Hasselquist, Sten; Johnson, Jennifer A.; Kollmeier, Juna A.; Nidever, David L.; Price-Whelan, Adrian M.; Rojas-Arriagada, Alvaro; Schultheis, Mathias; Shetrone, Matthew; Simon, Joshua D.; Aerts, Conny; Borissova, Jura; Drout, Maria R.; Geisler, Doug; Law, C. Y.; Medina, Nicolas; Minniti, Dante; Monachesi, Antonela; Munoz, Ricardo R.; Poleski, Radoslaw; Roman-Lopes, Alexandre; Schlaufman, Kevin C.; Stutz, Amelia M.; Teske, Johanna; Tkachenko, Andrew; Van Saders, Jennifer L.; Weinberger, Alycia J.; Zoccali, ManuelaAPOGEE is a high-resolution (R similar to 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.
- ItemFinal Targeting Strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 North Survey(2021) Beaton, Rachael L.; Oelkers, Ryan J.; Hayes, Christian R.; Covey, Kevin R.; Chojnowski, S. D.; De Lee, Nathan; Sobeck, Jennifer S.; Majewski, Steven R.; Cohen, Roger E.; Fernandez-Trincado, Jose; Longa-Pena, Penelope; O'Connell, Julia E.; Santana, Felipe A.; Stringfellow, Guy S.; Zasowski, Gail; Aerts, Conny; Anguiano, Borja; Bender, Chad; Canas, Caleb I.; Cunha, Katia; Donor, John; Fleming, Scott W.; Frinchaboy, Peter M.; Feuillet, Diane; Harding, Paul; Hasselquist, Sten; Holtzman, Jon A.; Johnson, Jennifer A.; Kollmeier, Juna A.; Kounkel, Marina; Mahadevan, Suvrath; Price-Whelan, Adrian. M.; Rojas-Arriagada, Alvaro; Roman-Zuniga, Carlos; Schlafly, Edward F.; Schultheis, Mathias; Shetrone, Matthew; Simon, Joshua D.; Stassun, Keivan G.; Stutz, Amelia M.; Tayar, Jamie; Teske, Johanna; Tkachenko, Andrew; Troup, Nicholas; Albareti, Franco D.; Bizyaev, Dmitry; Bovy, Jo; Burgasser, Adam J.; Comparat, Johan; Downes, Juan Jose; Geisler, Doug; Inno, Laura; Manchado, Arturo; Ness, Melissa K.; Pinsonneault, Marc H.; Prada, Francisco; Roman-Lopes, Alexandre; Simonian, Gregory V. A.; Smith, Verne V.; Yan, Renbin; Zamora, OlgaThe Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of producing a chemodynamical mapping of the Milky Way. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two implementation modes: (i) "Ancillary Science Programs" competitively awarded to Sloan Digital Sky Survey IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5 yr expansion of the survey, known as the Bright Time Extension (BTX), made possible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The BTX permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new data sets not available at the outset of the survey design, and expansions of existing programs to enhance their scientific success and reach. After describing the motivations, implementation, and assessment of these programs, we also leave a summary of lessons learned from nearly a decade of APOGEE-1 and APOGEE-2 survey operations. A companion paper, F. Santana et al. (submitted; AAS29036), provides a complementary presentation of targeting modifications relevant to APOGEE-2 operations in the Southern Hemisphere.
- ItemSpatial variations in the Milky Way disc metallicity-age relation(2019) Feuillet, Diane K.; Frankel, Neige; Lind, Karin; Frinchaboy, Peter M.; Garcia-Hernandez, D. A.; Lane, Richard R.; Nitschelm, Christian; Roman-Lopes, AlexandreStellar ages are a crucial component to studying the evolution of the Milky Way. Using Gaia DR2 distance estimates, it is now possible to estimate stellar ages for a larger volume of evolved stars through isochrone matching. This work presents [M/H]-age and [alpha/M]-age relations derived for different spatial locations in the Milky Way disc. These relations are derived by hierarchically modelling the star formation history of stars within a given chemical abundance bin. For the first time, we directly observe that significant variation is apparent in the [M/H]-age relation as a function of both Galactocentric radius and distance from the disc midplane. The [M/H]-age relations support claims that radial migration has a significant effect in the plane of the disc. Using the [M/H] bin with the youngest mean age at each radial zone in the plane of the disc, the present-day metallicity gradient is measured to be -0.059 +/- 0.010 dex kpc(-1), in agreement with Cepheids and young field stars. We find a vertically flared distribution of young stars in the outer disc, confirming predictions of models and previous observations. The mean age of the [M/H]-[alpha/M] distribution of the solar neighbourhood suggests that the high-[M/H] stars are not an evolutionary extension of the low-alpha sequence. Our observational results are important constraints to Galactic simulations and models of chemical evolution.
- ItemThe Hercules stream as seen by APOGEE-2 South(2018) Hunt, Jason A. S.; Bovy, Jo; Perez-Villegas, Angeles; Holtzman, Jon A.; Sobeck, Jennifer; Chojnowski, Drew; Santana, Felipe A.; Palicio, Pedro A.; Wegg, Christopher; Gerhard, Ortwin; Almeida, Andres; Bizyaev, Dmitry; Fernandez-Trincado, Jose G.; Lane, Richard R.; Pelope Longa-Pena, Pen; Majewski, Steven R.; Pan, Kaike; Roman-Lopes, AlexandreThe Hercules stream is a group of comoving stars in the solar neighbourhood, which can potentially be explained as a signature of either the outer Lindblad resonance (OLR) of a fast Galactic bar or the corotation resonance (CR) of a slower bar. In either case, the feature should be present over a large area of the disc. With the recent commissioning of the APOGEE-2 Southern spectrograph we can search for the Hercules stream at (l, b)=(270 degrees, 0), a direction in which the Hercules stream, if caused by the bar's OLR, would be strong enough to be detected using only the line-of-sight velocities. We clearly detect a narrow, Hercules-like feature in the data that can be traced from the solar neighbourhood to a distance of about 4 kpc. The detected feature matches well the line-of-sight velocity distribution from the fast-bar (OLR) model. Confronting the data with a model where the Hercules stream is caused by the CR of a slower bar leads to a poorer match, as the corotation model does not predict clearly separated modes, possibly because the slow-bar model is too hot.
- ItemThe Milky Way's bulge star formation history as constrained from its bimodal chemical abundance distribution(2020) Lian, Jianhui; Zasowski, Gail; Hasselquist, Sten; Nataf, David M.; Thomas, Daniel; Bidin, Christian Moni; Fernandez-Trincado, Jose G.; Garcia-Hernandez, D. A.; Lane, Richard R.; Majewski, Steven R.; Roman-Lopes, Alexandre; Schultheis, MathiasWe conduct a quantitative analysis of the star formation history (SFH) of the Milky Way's (MW) bulge by exploiting the constraining power of its stellar [Fe/H] and [Mg/Fe] distribution functions. Using Apache Point Observatory Galactic Evolution Experiment survey data, we confirm the previously established bimodal [Mg/Fe]-[Fe/H] distribution within 3 kpc of the inner Galaxy. To fit the chemical bimodal distribution, we use a simple but flexible star formation framework, which assumes two distinct stages of gas accretion and star formation, and systematically evaluate a wide multidimensional parameter space. We find that the data favour a three-phase SFH that consists of an initial starburst, followed by a rapid star formation quenching episode, and a lengthy, quiescent secular evolution phase. The metal-poor, high-alpha bulge stars ([Fe/H] < 0.0 and [Mg/Fe] > 0.15) are formed rapidly (<2Gyr) during the early starburst. The density gap between the high- and low-alpha sequences is due to the quenching process. The metal-rich, low-a population ([Fe/H] > 0.0 and [Mg/Fe] < 0.15) then accumulates gradually through inefficient star formation during the secular phase. This is qualitatively consistent with the early SFH of the inner disc. Given this scenario, a notable fraction of young stars (age <5Gyr) is expected to persist in the bulge. Combined with extragalactic observations, these results suggest that a rapid star formation quenching process is responsible for bimodal distributions in both the MW's stellar populations and in the general galaxy population and thus plays a critical role in galaxy evolution.
- ItemThe Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16(2020) Donor, John; Frinchaboy, Peter M.; Cunha, Katia; O'Connell, Julia E.; Prieto, Carlos Allende; Almeida, Andres; Anders, Friedrich; Beaton, Rachael; Bizyaev, Dmitry; Brownstein, Joel R.; Carrera, Ricardo; Chiappini, Cristina; Cohen, Roger; Garcia-Hernandez, D. A.; Geisler, Doug; Hasselquist, Sten; Jonsson, Henrik; Lane, Richard R.; Majewski, Steven R.; Minniti, Dante; Bidin, Christian Moni; Pan, Kaike; Roman-Lopes, Alexandre; Sobeck, Jennifer S.; Zasowski, GailThe Open Cluster Chemical Abundances and Mapping (OCCAM) survey aims to constrain key Galactic dynamical and chemical evolution parameters by the construction of a large, comprehensive, uniform, infrared-based spectroscopic data set of hundreds of open clusters. This fourth contribution from the OCCAM survey presents analysis using Sloan Digital Sky Survey/APOGEE DR16 of a sample of 128 open clusters, 71 of which we designate to be "high quality" based on the appearance of their color-magnitude diagram. We find the APOGEE DR16 derived [Fe/H] abundances to be in good agreement with previous high-resolution spectroscopic open cluster abundance studies. Using the high-quality sample, we measure Galactic abundance gradients in 16 elements, and find evolution of some of the [X/Fe] gradients as a function of age. We find an overall Galactic [Fe/H] versus R-GC gradient of -0.068 0.001 dex kpc(-1) over the range of 6 R-GC < 13.9 kpc; however, we note that this result is sensitive to the distance catalog used, varying as much as 15%. We formally derive the location of a break in the [Fe/H] abundance gradient as a free parameter in the gradient fit for the first time. We also measure significant Galactic gradients in O, Mg, S, Ca, Mn, Cr, Cu, Na, Al, and K, some of which are measured for the first time. Our large sample allows us to examine four well-populated age bins in order to explore the time evolution of gradients for a large number of elements and comment on possible implications for Galactic chemical evolution and radial migration.
- ItemThe Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data(2022) Abdurro'uf; Accetta, Katherine; Aerts, Conny; Aguirre, Victor Silva; Ahumada, Romina; Ajgaonkar, Nikhil; Ak, N. Filiz; Alam, Shadab; Prieto, Carlos Allende; Almeida, Andres; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aquino-Ortiz, Erik; Aragon-Salamanca, Alfonso; Argudo-Fernandez, Maria; Ata, Metin; Aubert, Marie; Avila-Reese, Vladimir; Badenes, Carles; Barba, Rodolfo H.; Barger, Kat; Barrera-Ballesteros, Jorge K.; Beaton, Rachael L.; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bidin, Christian Moni; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Boardman, Nicholas Fraser; Bolton, Adam S.; Boquien, Mederic; Borissova, Jura; Bovy, Jo; Brandt, W. N.; Brown, Jordan; Brownstein, Joel R.; Brusa, Marcella; Buchner, Johannes; Bundy, Kevin; Burchett, Joseph N.; Bureau, Martin; Burgasser, Adam; Cabang, Tuesday K.; Campbell, Stephanie; Cappellari, Michele; Carlberg, Joleen K.; Wanderley, Fabio Carneiro; Carrera, Ricardo; Cash, Jennifer; Chen, Yan-Ping; Chen, Wei-Huai; Cherinka, Brian; Chiappini, Cristina; Choi, Peter Doohyun; Chojnowski, S. Drew; Chung, Haeun; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; da Costa, Luiz; Covey, Kevin; Crane, Jeffrey D.; Cruz-Gonzalez, Irene; Culhane, Connor; Cunha, Katia; Dai, Y. Sophia; Damke, Guillermo; Darling, Jeremy; Davidson, James W., Jr.; Davies, Roger; Dawson, Kyle; De Lee, Nathan; Diamond-Stanic, Aleksandar M.; Cano-Diaz, Mariana; Sanchez, Helena Dominguez; Donor, John; Duckworth, Chris; Dwelly, Tom; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Fan, Xiaohui; Farr, Emily; Feng, Shuai; Fernandez-Trincado, Jose G.; Feuillet, Diane; Filipp, Andreas; Fillingham, Sean P.; Frinchaboy, Peter M.; Fromenteau, Sebastien; Galbany, Lluis; Garcia, Rafael A.; Garcia-Hernandez, D. A.; Ge, Junqiang; Geisler, Doug; Gelfand, Joseph; Geron, Tobias; Gibson, Benjamin J.; Goddy, Julian; Godoy-Rivera, Diego; Grabowski, Kathleen; Green, Paul J.; Greener, Michael; Grier, Catherine J.; Griffith, Emily; Guo, Hong; Guy, Julien; Hadjara, Massinissa; Harding, Paul; Hasselquist, Sten; Hayes, Christian R.; Hearty, Fred; Hill, Lewis; Hogg, David W.; Holtzman, Jon A.; Horta, Danny; Hsieh, Bau-Ching; Hsu, Chin-Hao; Hsu, Yun-Hsin; Huber, Daniel; Huertas-Company, Marc; Hutchinson, Brian; Hwang, Ho Seong; Ibarra-Medel, Hector J.; Chitham, Jacob Ider; Ilha, Gabriele S.; Imig, Julie; Jaekle, Will; Jayasinghe, Tharindu; Ji, Xihan; Johnson, Jennifer A.; Jones, Amy; Jonsson, Henrik; Katkov, Ivan; Khalatyan, Arman; Kinemuchi, Karen; Kisku, Shobhit; Knapen, Johan H.; Kneib, Jean-Paul; Kollmeier, Juna A.; Kong, Miranda; Kounkel, Marina; Kreckel, Kathryn; Krishnarao, Dhanesh; Lacerna, Ivan; Lane, Richard R.; Langgin, Rachel; Lavender, Ramon; Law, David R.; Lazarz, Daniel; Leung, Henry W.; Leung, Ho-Hin; Lewis, Hannah M.; Li, Cheng; Li, Ran; Lian, Jianhui; Liang, Fu-Heng; Lin, Lihwai; Lin, Yen-Ting; Lin, Sicheng; Lintott, Chris; Long, Dan; Longa-Pena, Penelope; Lopez-Coba, Carlos; Lu, Shengdong; Lundgren, Britt F.; Luo, Yuanze; Mackereth, J. Ted; de la Macorra, Axel; Mahadevan, Suvrath; Majewski, Steven R.; Manchado, Arturo; Mandeville, Travis; Maraston, Claudia; Margalef-Bentabol, Berta; Masseron, Thomas; Masters, Karen L.; Mathur, Savita; McDermid, Richard M.; Mckay, Myles; Merloni, Andrea; Merrifield, Michael; Meszaros, Szabolcs; Miglio, Andrea; Di Mille, Francesco; Minniti, Dante; Minsley, Rebecca; Monachesi, Antonela; Moon, Jeongin; Mosser, Benoit; Mulchaey, John; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Myers, Natalie; Nadathur, Seshadri; Nair, Preethi; Nandra, Kirpal; Neumann, Justus; Newman, Jeffrey A.; Nidever, David L.; Nikakhtar, Farnik; Nitschelm, Christian; O'Connell, Julia E.; Garma-Oehmichen, Luis; de Oliveira, Gabriel Luan Souza; Olney, Richard; Oravetz, Daniel; Ortigoza-Urdaneta, Mario; Osorio, Yeisson; Otter, Justin; Pace, Zachary J.; Padilla, Nelson; Pan, Kaike; Pan, Hsi-An; Parikh, Taniya; Parker, James; Peirani, Sebastien; Ramirez, Karla Pena; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Pinsonneault, Marc; Poidevin, Frederick; Poovelil, Vijith Jacob; Price-Whelan, Adrian M.; Queiroz, Anna Barbara de Andrade; Raddick, M. Jordan; Ray, Amy; Rembold, Sandro Barboza; Riddle, Nicole; Riffel, Rogemar A.; Riffel, Rogerio; Rix, Hans-Walter; Robin, Annie C.; Rodriguez-Puebla, Aldo; Roman-Lopes, Alexandre; Roman-Zuniga, Carlos; Rose, Benjamin; Ross, Ashley J.; Rossi, Graziano; Rubin, Kate H. R.; Salvato, Mara; Sanchez, Sebastian F.; Sanchez-Gallego, Jose R.; Sanderson, Robyn; Rojas, Felipe Antonio Santana; Sarceno, Edgar; Sarmiento, Regina; Sayres, Conor; Sazonova, Elizaveta; Schaefer, Adam L.; Schiavon, Ricardo; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schwope, Axel; Serenelli, Aldo; Serna, Javier; Shao, Zhengyi; Shapiro, Griffin; Sharma, Anubhav; Shen, Yue; Shetrone, Matthew; Shu, Yiping; Simon, Joshua D.; Skrutskie, M. F.; Smethurst, Rebecca; Smith, Verne; Sobeck, Jennifer; Spoo, Taylor; Sprague, Dani; Stark, David, V; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Stone-Martinez, Alexander; Storchi-Bergmann, Thaisa; Stringfellow, Guy S.; Stutz, Amelia; Su, Yung-Chau; Taghizadeh-Popp, Manuchehr; Talbot, Michael S.; Tayar, Jamie; Telles, Eduardo; Teske, Johanna; Thakar, Ani; Theissen, Christopher; Tkachenko, Andrew; Thomas, Daniel; Tojeiro, Rita; Toledo, Hector Hernandez; Troup, Nicholas W.; Trump, Jonathan R.; Trussler, James; Turner, Jacqueline; Tuttle, Sarah; Unda-Sanzana, Eduardo; Vazquez-Mata, Jose Antonio; Valentini, Marica; Valenzuela, Octavio; Vargas-Gonzalez, Jaime; Vargas-Magana, Mariana; Alfaro, Pablo Vera; Villanova, Sandro; Vincenzo, Fiorenzo; Wake, David; Warfield, Jack T.; Washington, Jessica Diane; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Weiss, Achim; Westfall, Kyle B.; Wild, Vivienne; Wilde, Matthew C.; Wilson, John C.; Wilson, Robert F.; Wilson, Mikayla; Wolf, Julien; Wood-Vasey, W. M.; Yan, Renbin; Zamora, Olga; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zheng, Zheng; Zheng, Zheng; Zhu, KaiThis paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.