• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Roman, Carlos"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Bounded vorticity for the 3D Ginzburg-Landau model and an isoflux problem
    (2023) Roman, Carlos; Sandier, Etienne; Serfaty, Sylvia
    We consider the full three-dimensional Ginzburg-Landau model of superconductivity with applied magnetic field, in the regime where the intensity of the applied field is close to the 'first critical field' Hc1$H_{c_1}$ at which vortex filaments appear, and in the asymptotics of a small inverse Ginzburg-Landau parameter epsilon$\varepsilon$. This onset of vorticity is directly related to an 'isoflux problem' on curves (finding a curve that maximizes the ratio of a magnetic flux by its length), whose study was initiated in [22] and which we continue here. By assuming a nondegeneracy condition for this isoflux problem, which we show holds at least for instance in the case of a ball, we prove that if the intensity of the applied field remains below Hc1+Clog|log epsilon|${H_{c_1}}+ C \log {|\log \varepsilon |}$, the total vorticity remains bounded independently of epsilon$\varepsilon$, with vortex lines concentrating near the maximizer of the isoflux problem, thus extending to the three-dimensional setting a two-dimensional result of [28]. We finish by showing an improved estimate on the value of Hc1${H_{c_1}}$ in some specific simple geometries.
  • No Thumbnail Available
    Item
    Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3
    (2019) del Pino, Manuel; Musso, Monica; Roman, Carlos; Wei, Juncheng
    We consider the problem of finding positive solutions of the problem u -.u + u5 = 0 in a bounded, smooth domain in R3, under zero Neumann boundary conditions. Here. is a positive number. We analyze the role of Green's function of - +. in the presence of solutions exhibiting single bubbling behavior at one point of the domain when. is regarded as a parameter. As a special case of our results, we find and characterize a positive value.* such that if. -. * > 0 is sufficiently small, then this problem is solvable by a solution u. which blows-up by bubbling at a certain interior point of lambda down arrow lambda(*).
  • Loading...
    Thumbnail Image
    Item
    Unbounded mass radial solutions for the Keller-Segel equation in the disk
    (SPRINGER HEIDELBERG, 2021) Bonheure, Denis; Casteras, Jean Baptiste; Roman, Carlos
    We consider the boundary value problem

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback