• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rojas Lobos, Felix Eduardo"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Extended Kalman Filtering for Floating Capacitor Voltage Estimation on Triple Star Bridge Cells
    (2025) Lillo Cartes, Jonathan Andrés; Rojas Lobos, Felix Eduardo; Pereda Torres, Javier; Verdugo Naranjo, Diego Arturo
    Modular multilevel cascade converters (MMCCs) have emerged as one of the most attractive topologies for medium and high-voltage applications due to their modularity, scalability, redundancy, and high power quality. Voltage balancing in power submodule (SM) capacitors plays a critical role in the internal energy balancing of the MMCC, making monitoring SM capacitor voltages a crucial task.However, achieving higher operating voltages requires a substantial increase in the number of voltage sensors and communication lines. This escalation in hardware complexity renders the system more reliant on sensors, reducing its reliability. Several techniques for estimating capacitor voltages have been presented to address this control and design burden. This work proposes an extended Kalman filter (EKF)-based observer for capacitor voltage estimation of all SMs in a triple-star bridge converter (TSBC). The proposed approach operates effectively under both open-loop and closed-loop conditions during transients and steady-state operation, enabling a decoupled controller using just one voltage and one current sensor per cluster. Experiments conducted in a TSBC composed of 27 SMs demonstrate the effectiveness of the proposed approach during transients and steady-state operation.
  • No Thumbnail Available
    Item
    Finite Control Set Model Predictive Current Control (FCS-MPCC) of Three-Port Converter for Fuel Cell Hybrid Electric Vehicles
    (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2025) Lizana Gajardo, Alonso Javier; Pereda Torres, Javier; Rubio, Felipe; Rojas Lobos, Felix Eduardo
    Fuel cell hybrid electric vehicles (FCEVs) are considered an appealing option for heavy-duty and long-distance vehicles. However, they require the use of multiple power converters to manage power distribution among the fuel cell, battery or ultracapacitor, and AC motor, leading to increased power losses and a more complex system. To overcome this challenge, multi-port power converters have been proposed to combine two power sources and the AC motor into one conversion stage, boosting overall efficiency and power density in hybrid powertrains. However, these converters still rely on a high number of semiconductors and involve complex control systems. This paper introduces a three-port converter (TPC) for FCHEVs, using only one power stage with 6 semiconductors, achieving high performance control of an ac motor, a fuel cell and a battery. A multivariable optimal control (Finite-Control-Set Model Predictive Current Control) manages the power flows between the energy sources and drives the motor simultaneously. Additionally, the performance of the multiport converter is improved by replacing its three inductors with a custom coupled inductor designed to reduce circulating AC currents. This innovation contributes to improved efficiency and overall functionality of the FCHEV system. The proposed system was validated through an 0.5kW experimental test bench and simulations of an urban driving cycle. The system controlled the multiple variables of the hybrid system with proper operation and fast dynamics, meanwhile the coupled inductor decreases the current magnitude in 20% compared to the non-coupled configuration.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback