Browsing by Author "Roa, Vanesa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAntimicrobial Activity against Fusarium oxysporum f. sp. dianthi of TiO2/ZnO Thin Films under UV Irradiation: Experimental and Theoretical Study(2024) Quinones, Cesar; Posada, Martha; Hormiga, Angie; Pena, Julian; Diaz-Uribe, Carlos; Vallejo, William; Munoz-Acevedo, Amner; Roa, Vanesa; Schott, Eduardo; Zarate, XimenaWe deposited bare TiO2 and TiO2/ZnO thin films to study their antimicrobial capacity against Fusarium oxysporum f. sp. dianthi. The deposit of TiO2 was performed by spin coating and the ZnO thin films were deposited onto the TiO2 surface by plasma-assisted reactive evaporation technique. The characterization of the compounds was carried out by scanning electron microscopy (SEM) and powder X-ray diffraction techniques. Furthermore, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed to support the observed experimental results. Thus, the removal of methylene blue (MB) by adsorption and posterior photocatalytic degradation was studied. Adsorption kinetic results showed that TiO2/ZnO thin films were more efficient in MB removal than bare TiO2 thin films, and the pseudo-second-order model was suitable to describe the experimental results for TiO2/ZnO (q(e) = 12.9 mg/g; k(2) = 0.14 g/mg/min) and TiO2 thin films (q(e) = 12.0 mg/g; k(2) = 0.13 g/mg/min). Photocatalytic results under UV irradiation showed that TiO2 thin films reached 10.9% of MB photodegradation (k = 1.0 x 10(-3) min(-1)), whereas TiO2/ZnO thin films reached 20.6% of MB photodegradation (k = 3.9 x 10(-3) min(-1)). Both thin films reduced the photocatalytic efficiency by less than 3% after 4 photocatalytic tests. DFT study showed that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap decreases for the mixed nanoparticle system, showing its increased reactivity. Furthermore, the chemical hardness shows a lower value for the mixed system, whereas the electrophilicity index shows the biggest value, supporting the larger reactivity for the mixed nanoparticle system. Finally, the antimicrobial activity against F. oxysporum f. sp. dianthi showed that bare TiO2 reached a growth reduction of 68% while TiO2/ZnO reached a growth reduction of 90% after 250 min of UV irradiation.
- ItemCatalytic evaluation of MOF-808 with metallic centers of Zr(IV), Hf(IV) and Ce(IV) in the acetalization of benzaldehyde with methanol(Royal Society Chemistry, 2024) Arellano Valderrama, Yazmin Anay; Pazo Carballo, César Alexander; Roa, Vanesa; Hidalgo-Rosa, Yoan; Zarate, Ximena; Llanos, Jaime; Escalona Burgos, Nestor Guillermo; Schott, EduardoIn the context of climate change, it is of utmost importance to replace the use of fossil fuels as raw material in areas of industrial interest, for example, in the production of chemical inputs. In this context, a viable option is biomass, since by subjecting it to chemical processes such as pyrolysis, it is possible to obtain platform molecules that are the basis for the generation of value-added chemical products. Acetals are molecules obtained from biomass derIVatIVes, which have various applications in cosmetic chemistry, in the pharmaceutical industry as intermediates or final compounds, food additIVes, among others. Different catalysts have been used in the acetalization reaction, including MOFs, which have the advantage of being porous materials with high surface area values. The large surface area translates into a greater number of catalytically actIVe sites available for the reaction. Among the MOFs that have been used for this purpose is MOF-808, which is characterized by having a lower number of ligands attached to its metal cluster, therefore, it has a greater exposure of the metals that make up its structure. In this context, the work carried out studied the catalytic performance of MOF-808 when its Zr(IV) metal centers are replaced by Hf(IV) and Ce(IV) atoms in the acetalization reaction of benzaldehyde with methanol. The MOFs obtained by solvothermal synthesis were characterized by powder X-ray diffraction, N-2 adsorption and desorption, FT-IR spectroscopy, acid-base potentiometric titration, XPS and thermogravimetric analysis. The results of the catalysis indicate that the MOF with the best performance was MOF-808-Ce, which achieved conversions greater than 80% in a period of ten minutes. MOF-808-Ce exhibits a higher number of defects and therefore a higher availability of catalytic sites for the reaction to occur, which explains the better performance. Finally, the performance of MOF-808 in the acetalization of benzaldehyde with methanol was also supported by density functional theory (DFT) calculations.
- ItemRemoval and photocatalytic degradation of methylene blue on ZrO2 thin films modified with Anderson-Polioxometalates (Cr3+, Co3+, Cu2+): An experimental and theoretical study(2024) Díaz-Uribe, Carlos; Florez, Jiress; Vallejo, William; Duran, Freider; Puello, Esneyder; Roa, Vanesa; Schott, Eduardo; Zarate, XimenaIn this work, several ZrO2 thin films modified with Anderson-type polyoxomolybdates (POMs) with general formula (NH4)6-n[XMo6O24H6]-6+n where X = Co3+, Cr3+ and, Cu2+ were prepared. Thin films were characterized through SEM and EDX assay, UV–Vis diffuse reflectance and Fourier Transform Infrared (FTIR) assay. The optical bandgap of ZrO2 thin films was determined to be 3.25 eV, while the modified thin films showed a red shift in the optical activity compared with bare ZrO2 thin films. Methylene Blue (MB) adsorption studies showed that Freundlich isotherm describes properly the experimental data for modified-ZrO2 thin films. Besides, the kinetic results showed the MB adsorption of modified-ZrO2 thin films was superior to bare ZrO2 thin film. The adsorption rate values (K2) of the pseudo-second order model follow these trend ZrO2/CrPOM > ZrO2/CoPOM > ZrO2/CuPOM > ZrO2. The photocatalytic activity of the thin films for MB decomposition under UV and Visible irradiation was studied. Among all the catalysts, the ZrO2 thin films showed the lowest photocatalytic degradation rate kap value (kap = 1.5 × 10−3 min−1), while the best result was obtained for ZrO2/CrPOM thin films (kap = 5.7 × 10−3 min−1) under UV irradiation. Besides, this was the only catalyst efficiently active in MB degradation under visible irradiation, these materials reach 10.4 % after 100 min under visible irradiation. Finally, chemical calculations supported the observed results, by means of TDDFT, EDA analysis, Fukui function and periodic DFT calculations.