Browsing by Author "Rivera, Eugenio"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAn inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta(2023) Navarrete, Alvaro; Utrera, Andres; Rivera, Eugenio; Latorre, Marcos; Celentano, Diego J.; Garcia-Herrera, Claudio M.The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.
- ItemAnalysis of the geometrical influence of ring-opening samples on arterial circumferential residual stress reconstruction(2023) Inostroza, Matias; Utrera, Andres; Garcia-Herrera, Claudio M.; Rivera, Eugenio; Celentano, Diego J.; Herrera, Emilio A.This work consists of analyzing the impact of geometrical features (thickness and curvature) on the estimation of circumferential residual stresses in arteries. For this purpose, a specific sample of lamb abdominal artery is chosen for analysis and, through computational tools based on Python libraries, the stress-free geometry is captured after the ring opening test. Numerical simulations are then used to reconstruct the sample in order to estimate the circumferential residual stresses. Then, four stress-free geometry models are analyzed: an ideal geometry, i.e., constant curvature and thickness; a constant curvature and variable thickness geometry; a variable curvature and constant thickness geometry; and a variable curvature and thickness geometry. The numerical results show that models perform well from a geometric point of view, where the most different feature was the closed outer perimeter that differs about 14% from the closed real sample. As far as residual stress is concerned, differences up to 198% were found in more realistic models taking a constant curvature and thickness model as reference. Thus, the analysis of a realistic geometry with highly variable curvature and thickness can introduce, compared to an idealized geometry, significant differences in the estimation of residual stresses. This could indicate that the characterization of arterial residual stresses is not sufficient when considering only the opening angle and, therefore, it is also necessary to incorporate more geometrical variables.
- ItemBiomechanical characterization of the passive response of the thoracic aorta in chronic hypoxic newborn lambs using an evolutionary strategy(2021) Rivera, Eugenio; Canales, Claudio; Pacheco, Matias; Garcia-Herrera, Claudio; Macias, Demetrio; Celentano, Diego J.; Herrera, Emilio A.The present study involves experiments and modelling aimed at characterizing the passive structural mechanical behavior of the chronic hypoxic lamb thoracic aorta, whose gestation, birth and postnatal period were carried at high altitude (3600 masl). To this end, the mechanical response was studied via tensile and pressurization tests. The tensile and pressurization tests measurements were used simultaneously to calibrate the material parameters of the Gasser-Holzapfel-Ogden (GHO) hyperelasctic anisotropic constitutive model through an analytical-numerical optimization procedure solved with an evolutionary strategy that guarantees a stable response of the model. The model and procedure of calibration adequately adjust to the material behavior in a wide deformation range with an appropriate physical description. The results of this study predict the mechanical response of the lamb thoracic aorta under generalized loading states like those that can occur in physiological conditions and/or in systemic arterial hypertension. Finally, the novel use of the evolutionary strategy, together with the set of experiments and tools used in this study, provide a robust alternative to validate biomechanical characterizations.
- ItemCaracterización del daño mecánico de la aorta en condición de hipoxia(2021) Bezmalinovic, Alejandro; Rivera, Eugenio; García-Herrera, Claudio; Celentano, Diego J.; González-Candia, Alejandro; Herrera, Emilio A.