• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Richard, Johan"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    ALMA Lensing Cluster Survey: A spectral stacking analysis of [C II] in lensed z ∼ 6 galaxies
    (2021) Jolly, Jean-Baptiste; Knudsen, Kirsten; Laporte, Nicolas; Richard, Johan; Fujimoto, Seiji; Kohno, Kotaro; Ao, Yiping; Bauer, Franz E.; Egami, Eiichi; Espada, Daniel; Dessauges-Zavadsky, Miroslava; Magdis, Georgios; Schaerer, Daniel; Sun, Fengwu; Valentino, Francesco; Wang, Wei-Hao; Zitrin, Adi
    Context. The properties of galaxies at redshift z>6 hold the key to our understanding of the early stages of galaxy evolution and can potentially identify the sources of the ultraviolet radiation that give rise to the epoch of reionisation. The far-infrared cooling line of [C II] at 158 mu m is known to be bright and correlate with the star formation rate (SFR) of low-redshift galaxies, and hence is also suggested to be an important tracer of star formation and interstellar medium properties for very high-redshift galaxies.
  • No Thumbnail Available
    Item
    ALMA Lensing Cluster Survey: Bright [C ii] 158 μm Lines from a Multiply Imaged Sub-L* Galaxy at z=6.0719
    (2021) Fujimoto, Seiji; Oguri, Masamune; Brammer, Gabriel; Yoshimura, Yuki; Laporte, Nicolas; Gonzalez-Lopez, Jorge; Caminha, Gabriel B.; Kohno, Kotaro; Zitrin, Adi; Richard, Johan; Ouchi, Masami; Bauer, Franz E.; Smail, Ian; Hatsukade, Bunyo; Ono, Yoshiaki; Kokorev, Vasily; Umehata, Hideki; Schaerer, Daniel; Knudsen, Kirsten; Sun, Fengwu; Magdis, Georgios; Valentino, Francesco; Ao, Yiping; Toft, Sune; Dessauges-Zavadsky, Miroslava; Shimasaku, Kazuhiro; Caputi, Karina; Kusakabe, Haruka; Morokuma-Matsui, Kana; Shotaro, Kikuchihara; Egami, Eiichi; Lee, Minju M.; Rawle, Timothy; Espada, Daniel
    We present bright [C ii] 158 mu m line detections from a strongly magnified and multiply imaged (mu similar to 20-160) sub-L* (MUV=-19.75-0.44+0.55) Lyman-break galaxy (LBG) at z = 6.0719 +/- 0.0004, drawn from the ALMA Lensing Cluster Survey (ALCS). Emission lines are identified at 268.7 GHz at >= 8 sigma exactly at the positions of two multiple images of the LBG, behind the massive galaxy cluster RXCJ0600-2007. Our lens models, updated with the latest spectroscopy from VLT/MUSE, indicate that a sub region of the LBG crosses the caustic, and is lensed into a long (similar to 6 '') arc with a local magnification of mu similar to 160, for which the [C ii] line is also significantly detected. The source plane reconstruction resolves the interstellar medium (ISM) structure, showing that the [C ii] line is co-spatial with the rest-frame UV continuum at a scale of similar to 300 pc. The [C ii] line properties suggest that the LBG is a rotation-dominated system, whose velocity gradient explains a slight difference in redshifts between the whole LBG and its sub-region. The star formation rate (SFR)-L-[CII] relations, for whole and sub-regions of the LBG, are consistent with those of local galaxies. We evaluate the lower limit of the faint-end of the [C ii] luminosity function at z = 6, finding it to be consistent with predictions from semi-analytical models and from the local SFR-L-[CII] relation with a SFR function at z = 6. These results imply that the local SFR-L-[CII] relation is universal for a wide range of scales, including the spatially resolved ISM, the whole region of the galaxy, and the cosmic scale, even in the epoch of reionization.
  • No Thumbnail Available
    Item
    An atlas of MUSE observations towards twelve massive lensing clusters
    (2021) Richard, Johan; Claeyssens, Adelaide; Lagattuta, David; Guaita, Lucia; Bauer, Franz Erik; Pello, Roser; Carton, David; Bacon, Roland; Soucail, Genevieve; Lyon, Gonzalo Prieto; Kneib, Jean-Paul; Mahler, Guillaume; Clement, Benjamin; Mercier, Wilfried; Variu, Andrei; Tamone, Amelie; Ebeling, Harald; Schmidt, Kasper B.; Nanayakkara, Themiya; Maseda, Michael; Weilbacher, Peter M.; Bouche, Nicolas; Bouwens, Rychard J.; Wisotzki, Lutz; de la Vieuville, Geoffroy; Martinez, Johany; Patricio, Vera
    Context. Spectroscopic surveys of massive galaxy clusters reveal the properties of faint background galaxies thanks to the magnification provided by strong gravitational lensing.Aims. We present a systematic analysis of integral-field-spectroscopy observations of 12 massive clusters, conducted with the Multi Unit Spectroscopic Explorer (MUSE). All data were taken under very good seeing conditions (similar to 0 ''.6) in effective exposure times between two and 15 h per pointing, for a total of 125 h. Our observations cover a total solid angle of similar to 23 arcmin(2) in the direction of clusters, many of which were previously studied by the MAssive Clusters Survey, Frontier Fields (FFs), Grism Lens-Amplified Survey from Space and Cluster Lensing And Supernova survey with Hubble programmes. The achieved emission line detection limit at 5 sigma for a point source varies between (0.77-1.5) x 10(-18) erg s(-1) cm(-2) at 7000 angstrom.Methods. We present our developed strategy to reduce these observational data, detect continuum sources and line emitters in the datacubes, and determine their redshifts. We constructed robust mass models for each cluster to further confirm our redshift measurements using strong-lensing constraints, and identified a total of 312 strongly lensed sources producing 939 multiple images.Results. The final redshift catalogues contain more than 3300 robust redshifts, of which 40% are for cluster members and similar to 30% are for lensed Lyman-alpha emitters. Fourteen percent of all sources are line emitters that are not seen in the available HST images, even at the depth of the FFs (similar to 29 AB). We find that the magnification distribution of the lensed sources in the high-magnification regime (mu=2-25) follows the theoretical expectation of N(z) proportional to mu(-2). The quality of this dataset, number of lensed sources, and number of strong-lensing constraints enables detailed studies of the physical properties of both the lensing cluster and the background galaxies. The full data products from this work, including the datacubes, catalogues, extracted spectra, ancillary images, and mass models, are made available to the community.
  • Loading...
    Thumbnail Image
    Item
    JWST and ALMA Multiple-line Study in and around a Galaxy at z=8.496: Optical to Far-Infrared Line Ratios and the Onset of an Outflow Promoting Ionizing Photon Escape
    (2024) Fujimoto, Seiji; Ouchi, Masami; Nakajima, Kimihiko; Harikane, Yuichi; Isobe, Yuki; Brammer, Gabriel; Oguri, Masamune; Gimenez-Arteaga, Clara; Heintz, Kasper E.; Kokorev, Vasily; Bauer, Franz E.; Ferrara, Andrea; Kojima, Takashi; Lagos, Claudia del P.; Laura, Sommovigo; Schaerer, Daniel; Shimasaku, Kazuhiro; Hatsukade, Bunyo; Kohno, Kotaro; Sun, Fengwu; Valentino, Francesco; Watson, Darach; Fudamoto, Yoshinobu; Inoue, Akio K.; Gonzalez-Lopez, Jorge; Koekemoer, Anton M.; Knudsen, Kirsten; Lee, Minju M.; Magdis, Georgios E.; Richard, Johan; Strait, Victoria B.; Sugahara, Yuma; Tamura, Yoichi; Toft, Sune; Umehata, Hideki; Walth, Gregory
    We present Atacama Large Millimeter/submillimeter Array (ALMA) deep spectroscopy for a lensed galaxy at z(spec) = 8.496 with log(M-star/M-circle dot) similar to 7.8 whose optical nebular lines and stellar continuum are detected by JWST/NIRSpec and NIRCam Early Release Observations in the field of SMACS J0723.3-7327. Our ALMA spectrum shows [O III] 88 mu m and [C II] 158 mu m line detections at 4.0 sigma and 4.5 sigma, respectively. The redshift and position of the [O III] line coincide with those of the JWST source, while the [C II] line is blueshifted by 90 km s(-1) with a spatial offset of 0.'' 5 (approximate to 0.5 kpc in the source plane) from the centroid of the JWST source. The NIRCam F444W image, including [O III] lambda 5007 and H beta line emission, spatially extends beyond the stellar components by a factor of >8. This indicates that the z = 8.5 galaxy has already experienced strong outflows as traced by extended [O III] lambda 5007 and offset [C II] emission, which would promote ionizing photon escape and facilitate reionization. With careful slit-loss corrections and the removal of emission spatially outside the galaxy, we evaluate the [O III] 88 mu m/lambda 5007 line ratio, and derive the electron density n (e) by photoionization modeling to be 220(-130)(+230) cm(-3), which is comparable with those of z similar to 2-3 galaxies. We estimate an [O III] 88 mu m/[C II] 158 mu m line ratio in the galaxy of >4, as high as those of known z similar to 6-9 galaxies. This high [O III] 88 mu m/[C II] 158 mu m line ratio is generally explained by the high n(e) as well as the low metallicity (Z(gas)/Z(circle dot)=0.04(-0.02)(+0.02)), high ionization parameter (log U > -2.27), and low carbon-to-oxygen abundance ratio (log(C/O) = [-0.52: -0.24]) obtained from the JWST/NIRSpec data; further [C II] follow-up observations will constrain the covering fraction of photodissociation regions.
  • No Thumbnail Available
    Item
    Pilot-WINGS: An extended MUSE view of the structure of Abell 370
    (2022) Lagattuta, David J.; Richard, Johan; Bauer, Franz Erik; Cerny, Catherine; Claeyssens, Adelaide; Guaita, Lucia; Jauzac, Mathilde; Jeanneau, Alexandre; Koekemoer, Anton M.; Mahler, Guillaume; Prieto Lyon, Gonzalo; Acebron, Ana; Meneghetti, Massimo; Niemiec, Anna; Zitrin, Adi; Bianconi, Matteo; Connor, Thomas; Cen, Renyue; Edge, Alastair; Faisst, Andreas L.; Limousin, Marceau; Massey, Richard; Sereno, Mauro; Sharon, Keren; Weaver, John R.
    We investigate the strong-lensing cluster Abell 370 (A370) using a wide Integral Field Unit (IFU) spectroscopic mosaic from the Multi-Unit Spectroscopic Explorer (MUSE). IFU spectroscopy provides significant insight into the structure and mass content of galaxy clusters, yet IFU-based cluster studies focus almost exclusively on the central Einstein-radius region. Covering over 14 arcmin(2), the new MUSE mosaic extends significantly beyond the A370 Einstein radius, providing, for the first time, a detailed look at the cluster outskirts. Combining these data with wide-field, multi-band Hubble Space Telescope (HST) imaging from the BUFFALO project, we analyse the distribution of objects within the cluster and along the line of sight. Identifying 416 cluster galaxies, we use kinematics to trace the radial mass profile of the halo, providing a mass estimate independent from the lens model. We also measure radially averaged properties of the cluster members, tracking their evolution as a function of infall. Thanks to the high spatial resolution of our data, we identify six cluster members acting as galaxy-galaxy lenses, which constrain localized mass distributions beyond the Einstein radius. Finally, taking advantage of MUSE's 3D capabilities, we detect and analyse multiple spatially extended overdensities outside of the cluster that influence lensing-derived halo mass estimates. We stress that much of this work is only possible thanks to the robust, extended IFU coverage, highlighting its importance even in less optically dense cluster regions. Overall, this work showcases the power of combining HST + MUSE, and serves as the initial step towards a larger and wider program targeting several clusters.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback