Browsing by Author "Reichart, D. E."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemOrbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - IV. A 0.61+0.45 M⊙ binary in a multiple system(2012) Helminiak, K. G.; Konacki, M.; Rozyczka, M.; Kaluzny, J.; Ratajczak, M.; Borkowski, J.; Sybilski, P.; Muterspaugh, M. W.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Crain, J. A.; Foster, A. C.; Nysewander, M. C.; LaCluyze, A. P.We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) data base: ASAS J0113283821.1 A, which is a member of a visual binary system with the secondary component separated by about 1.4 arcsec. The radial velocities have been calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe telescope/Grating Instrument for Radiation Analysis with a Fibre-Fed Echelle (GIRAFFE) spectrograph, the 3.9-m Anglo-Australian Telescope (AAT)/University College London Echelle Spectrograph (UCLES) and the 3.0-m Shane telescope/Hamilton Spectrograph (HamSpec) on the basis of the todcor technique and the positions of the Ha emission lines. For the analysis, we have used V- and I-band photometry obtained with the 1.0-m Elizabeth telescope and the 0.41-m Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT), supplemented with the publicly available ASAS light curve of the system. We have found that ASAS J0113283821.1 A is composed of two late-type dwarfs, which have masses of M1 = 0.612 +/- 0.030 M? and M2 = 0.445 +/- 0.019 M? and radii of R1 = 0.596 +/- 0.020 R? and R2 = 0.445 +/- 0.024 R?. Both show a substantial level of activity, which manifests in strong Ha and H beta emission and the presence of cool spots. The influence of the third light on the eclipsing pair properties has also been evaluated and the photometric properties of component B have been derived. A comparison with several popular stellar evolution models shows that the system is on its main-sequence evolution stage and that it is probably more metal-rich than the Sun. We have also found several clues to suggest that component B itself is a binary composed of two nearly identical similar to 0.5-M? stars.
- ItemPhotometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)(2022) Brennan, S. J.; Fraser, M.; Johansson, J.; Pastorello, A.; Kotak, R.; Stevance, H. F.; Chen, T-W; Eldridge, J. J.; Bose, S.; Brown, P. J.; Callis, E.; Cartier, R.; Dennefeld, M.; Dong, Subo; Duffy, P.; Elias-Rosa, N.; Hosseinzadeh, G.; Hsiao, E.; Kuncarayakti, H.; Martin-Carrillo, A.; Monard, B.; Nyholm, A.; Pignata, G.; Sand, D.; Shappee, B. J.; Smartt, S. J.; Tucker, B. E.; Wyrzykowski, L.; Abbot, H.; Benetti, S.; Bento, J.; Blondin, S.; Chen, Ping; Delgado, A.; Galbany, L.; Gromadzki, M.; Gutierrez, C. P.; Hanlon, L.; Harrison, D. L.; Hiramatsu, D.; Hodgkin, S. T.; Holoien, T. W-S; Howell, D. A.; Inserra, C.; Kankare, E.; Kozlowski, S.; Muller-Bravo, T. E.; Maguire, K.; McCully, C.; Meintjes, P.; Morrell, N.; Nicholl, M.; O'Neill, D.; Pietrukowicz, P.; Poleski, R.; Prieto, J. L.; Rau, A.; Reichart, D. E.; Schweyer, T.; Shahbandeh, M.; Skowron, J.; Sollerman, J.; Soszynski, I; Stritzinger, M. D.; Szymanski, M.; Tartaglia, L.; Udalski, A.; Ulaczyk, K.; Young, D. R.; van Leeuwen, M.; van Soelen, B.We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of M-V similar to-18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s(-)(1) seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s(-1) seen in broad absorption from some high-velocity material. Late-time spectra (similar to+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H alpha among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
- ItemPLUTO's ATMOSPHERE FROM STELLAR OCCULTATIONS IN 2012 AND 2013(2015) Dias-Oliveira, A.; Sicardy, B.; Lellouch, E.; Vieira-Martins, R.; Assafin, M.; Camargo, J. I. B.; Braga-Ribas, F.; Gomes-Junior, A. R.; Benedetti-Rossi, G.; Colas, F.; Decock, A.; Doressoundiram, A.; Dumas, C.; Emilio, M.; Fabrega Polleri, J.; Gil-Hutton, R.; Gillon, M.; Girard, J. H.; Hau, G. K. T.; Ivanov, V. D.; Jehin, E.; Lecacheux, J.; Leiva, R.; Lopez-Sisterna, C.; Mancini, L.; Manfroid, J.; Maury, A.; Meza, E.; Morales, N.; Nagy, L.; Opitom, C.; Ortiz, J. L.; Pollock, J.; Roques, F.; Snodgrass, C.; Soulier, J. F.; Thirouin, A.; Vanzi, L.; Widemann, T.; Reichart, D. E.; LaCluyze, A. P.; Haislip, J. B.; Ivarsen, K. M.; Dominik, M.; Jorgensen, U.; Skottfelt, J.We analyze two multi-chord stellar occultations by Pluto that were observed on 2012 July 18th and 2013 May 4th, and respectively monitored from five and six sites. They provide a total of fifteen light curves, 12 of which were used for a simultaneous fit that uses a unique temperature profile, assuming a clear (no haze) and pure N-2 atmosphere, but allowing for a possible pressure variation between the two dates. We find a solution that satisfactorily fits (i.e., within the noise level) all of the 12 light curves, providing atmospheric constraints between similar to 1190 km (pressure similar to 11 mu bar) and similar to 1450 km (pressure similar to 0.1 mu bar) from Pluto's center. Our main results are: (1) the best-fitting temperature profile shows a stratosphere with a strong positive gradient between 1190 km (at 36 K, 11 mu bar) and r = 1215 km (6.0 mu bar), where a temperature maximum of 110 K is reached; above it is a mesosphere with a negative thermal gradient of -0.2 K km(-1) up to similar to 1390 km (0.25 mu bar), where the mesosphere connects itself to a more isothermal upper branch around 81 K; (2) the pressure shows a small (6%) but significant increase (6 sigma level) between the two dates; (3) without a troposphere, Pluto's radius is found to be R-P = 1190 +/- 5 km. Allowing for a troposphere, R-P is constrained to lie between 1168 and 1195 km; and (4) the currently measured CO abundance is too small to explain the mesospheric negative thermal gradient. Cooling by HCN is possible, but only if this species is largely saturated. Alternative explanations like zonal winds or vertical compositional variations of the atmosphere are unable to explain the observed mesospheric negative thermal gradient.
- ItemProgenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)(2022) Brennan, S. J.; Fraser, M.; Johansson, J.; Pastorello, A.; Kotak, R.; Stevance, H. F.; Chen, T-W; Eldridge, J. J.; Bose, S.; Brown, P. J.; Callis, E.; Cartier, R.; Dennefeld, M.; Dong, Subo; Duffy, P.; Elias-Rosa, N.; Hosseinzadeh, G.; Hsiao, E.; Kuncarayakti, H.; Martin-Carrillo, A.; Monard, B.; Pignata, G.; Sand, D.; Shappee, B. J.; Smartt, S. J.; Tucker, B. E.; Wyrzykowski, L.; Abbot, H.; Benetti, S.; Bento, J.; Blondin, S.; Chen, Ping; Delgado, A.; Galbany, L.; Gromadzki, M.; Gutierrez, C. P.; Hanlon, L.; Harrison, D. L.; Hiramatsu, D.; Hodgkin, S. T.; Holoien, T. W-S; Howell, D. A.; Inserra, C.; Kankare, E.; Kozlowski, S.; Muller-Bravo, T. E.; Maguire, K.; McCully, C.; Meintjes, P.; Morrell, N.; Nicholl, M.; O'Neill, D.; Pietrukowicz, P.; Poleski, R.; Prieto, J. L.; Rau, A.; Reichart, D. E.; Schweyer, T.; Shahbandeh, M.; Skowron, J.; Sollerman, J.; Soszynski, I; Stritzinger, M. D.; Szymanski, M.; Tartaglia, L.; Udalski, A.; Ulaczyk, K.; Young, D. R.; van Leeuwen, M.; van Soelen, B.We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a similar to 22-25 M-circle dot yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong H alpha emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of similar to 22 M-circle dot. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity similar to 650 km s(-1), while the second, more energetic event ejected material at similar to 4500 km s(-1). Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected Ni-56 mass of <0.016 M-circle dot. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
- ItemThe central engine of GRB 130831A and the energy breakdown of a relativistic explosion(OXFORD UNIV PRESS, 2016) De Pasquale, M.; Oates, S. R.; Racusin, J. L.; Kann, D. A.; Zhang, B.; Pozanenko, A.; Volnova, A. A.; Trotter, A.; Frank, N.; Cucchiara, A.; Troja, E.; Sbarufatti, B.; Butler, N. R.; Schulze, S.; Cano, Z.; Page, M. J.; Castro Tirado, A. J.; Gorosabel, J.; Lien, A.; Fox, O.; Littlejohns, O.; Bloom, J. S.; Prochaska, J. X.; de Diego, J. A.; Gonzalez, J.; Richer, M. G.; Roman Zuniga, C.; Watson, A. M.; Gehrels, N.; Moseley, H.; Kutyrev, A.; Zane, S.; Hoette, V.; Russell, R. R.; Rumyantsev, V.; Klunko, E.; Burkhonov, O.; Breeveld, A. A.; Reichart, D. E.; Haislip, J. B.Gamma-ray bursts (GRBs) are the most luminous explosions in the Universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, Reionization And Transients Infra-Red camera, Maidanak, International Scientific Optical-Observation Network, Nordic Optical Telescope, Liverpool Telescope and Gran Telescopio Canarias. This burst shows a steep drop in the X-ray light curve at similar to 10(5) s after the trigger, with a power-law decay index of a similar to 6. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at 105 s, must be of 'internal origin', produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for similar to 1 d in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower decay. The optical emission, on the other hand, shows no break across the X-ray steep decrease, and the late-time decays of both the X-ray and optical are consistent. Using both the X-ray and optical data, we show that the emission after similar to 10(5) s can be explained well by the FS model. We model our data to derive the kinetic energy of the ejecta and thus measure the efficiency of the central engine of a GRB with emission of internal origin visible for a long time. Furthermore, we break down the energy budget of this GRB into the prompt emission, the late internal dissipation, the kinetic energy of the relativistic ejecta, and compare it with the energy of the associated supernova, SN 2013 fu.