Browsing by Author "Rebolledo, Rolando A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemImplementation and design of customized ex vivo machine perfusion. Analysis of its first results(Wiley, 2021) Riveros, Sergio; Marino, Carlo; Ochoa, Gabriela; Morales, Emilio; Soto, Dagoberto; Alegria, Leyla; Josefina Zenteno, Maria; Branes, Alejandro; Achurra, Pablo; Rebolledo, Rolando A.The lack of organs available for transplantation is a global problem. The high mortality rates on the waiting list and the high number of discarded livers are reasons to develop new tools in the preservation and transplantation process. New tools should also be available for low-income countries. This article reports the development of customized normothermic machine perfusion (NMP). An ex vivo dual perfusion machine was designed, composed of a common reservoir organ box (CRO), a centrifugal pump (portal system, low pressure), and a roller pump (arterial system, high pressure). Porcine livers (n = 5) were perfused with an oxygenated normothermic (37celcius) strategy for 3 hours. Hemodynamic variables, metabolic parameters, and bile production during preservation were analyzed. Arterial and portal flow remain stable during perfusion. Total bilirubin production was 11.25 mL (4-14.5) at 180 minutes. The median pH value reached 7.32 (7.25-7.4) at 180 minutes. Lactate values decreased progressively to normalization at 120 minutes. This perfusion setup was stable and able to maintain the metabolic activity of a liver graft in a porcine animal model. Design and initial results from this customized NMP are promising for a future clinical application in low-income countries.
- ItemMetastatic cells exploit their stoichiometric niche in the network of cancer ecosystems(2023) Castillo, Simon P.; Rebolledo, Rolando A.; Arim, Matias; Hochberg, Michael E.; Marquet, Pablo A.Metastasis is a nonrandom process with varying degrees of organotropism-specific source-acceptor seeding. Understanding how patterns between source and acceptor tumors emerge remains a challenge in oncology. We hypothesize that organotropism results from the macronutrient niche of cells in source and acceptor organs. To test this, we constructed and analyzed a metastatic network based on 9303 records across 28 tissue types. We found that the topology of the network is nested and modular with scale-free degree distributions, reflecting organotropism along a specificity/generality continuum. The variation in topology is significantly explained by the matching of metastatic cells to their stoichiometric niche. Specifically, successful metastases are associated with higher phosphorus content in the acceptor compared to the source organ, due to metabolic constraints in proliferation crucial to the invasion of new tissues. We conclude that metastases are codetermined by processes at source and acceptor organs, where phosphorus content is a limiting factor orchestrating tumor ecology.