• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Quiroga, Clara"

Now showing 1 - 11 of 11
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    B Cells Adapt Their Nuclear Morphology to Organize the Immune Synapse and Facilitate Antigen Extraction
    (2022) Ulloa, Romina; Corrales, Oreste; Cabrera-Reyes, Fernanda; Jara-Wilde, Jorge; Saez, Juan Jose; Rivas, Christopher; Lagos, Jonathan; Haertel, Steffen; Quiroga, Clara; Yuseff, Maria-Isabel; Diaz-Munoz, Jheimmy
    Upon interaction with immobilized antigens, B cells form an immune synapse where actin remodeling and re-positioning of the microtubule-organizing center (MTOC) together with lysosomes can facilitate antigen extraction. B cells have restricted cytoplasmic space, mainly occupied by a large nucleus, yet the role of nuclear morphology in the formation of the immune synapse has not been addressed. Here we show that upon activation, B cells re-orientate and adapt the size of their nuclear groove facing the immune synapse, where the MTOC sits, and lysosomes accumulate. Silencing the nuclear envelope proteins Nesprin-1 and Sun-1 impairs nuclear reorientation towards the synapse and leads to defects in actin organization. Consequently, B cells are unable to internalize the BCR after antigen activation. Nesprin-1 and Sun-1-silenced B cells also fail to accumulate the tethering factor Exo70 at the center of the synaptic membrane and display defective lysosome positioning, impairing efficient antigen extraction at the immune synapse. Thus, changes in nuclear morphology and positioning emerge as critical regulatory steps to coordinate B cell activation.
  • No Thumbnail Available
    Item
    Expression of Herpud1 during osteoclast and osteoblast differentiation
    (FEDERATION AMER SOC EXP BIOL, 2016) Quiroga, Clara; Da Silva, Luan Americo; Mansilla, Georthan; Oyarzun, Ingrid; Bustamante, Mario; Castro, Pablo; Verdejo, Hugo
  • No Thumbnail Available
    Item
    Galectin-3 Promotes Pro-Hypertrophic Communication Between Fibroblasts and Cardiomyocytes
    (LIPPINCOTT WILLIAMS & WILKINS, 2017) Bustamante, Mario; Oyarzun, Ingrid; Mancilla, Georthan; Quiroga, Clara; Verdejo, Hugo E.; Castro, Pablo
  • No Thumbnail Available
    Item
    HERPUD1 governs tumor cell mitochondrial function via inositol 1,4,5-trisphosphate receptor-mediated calcium signaling
    (2024) Paredes, Felipe; Navarro-Marquez, Mario; Quiroga, Clara; Jimenez-Gallegos, Danica; Yeligar, Samantha M.; Parra, Valentina; Mueller, Marioly; Chiong, Mario; Quest, Andrew F. G.; San Martin, Alejandra; Lavandero, Sergio
    The intricate relationship between calcium (Ca2+) homeostasis and mitochondrial function is crucial for cellular metabolic adaptation in tumor cells. Ca2+-initiated signaling maintains mitochondrial respiratory capacity and ATP synthesis, influencing critical cellular processes in cancer development. Previous studies by our group have shown that the homocysteine-inducible ER Protein with Ubiquitin-Like Domain 1 (HERPUD1) regulates inositol 1,4,5-trisphosphate receptor (ITPR3) levels and intracellular Ca2+ signals in tumor cells. This study explores the role of HERPUD1 in regulating mitochondrial function and tumor cell migration by controlling ITPR3-dependent Ca2+ signals.We found HERPUD1 levels correlated with mitochondrial function in tumor cells, with HERPUD1 deficiency leading to enhanced mitochondrial activity. HERPUD1 knockdown increased intracellular Ca2+ release and mitochondrial Ca2+ influx, which was prevented using the ITPR3 antagonist xestospongin C or the Ca2+ chelator BAPTA-AM. Furthermore, HERPUD1 expression reduced tumor cell migration by controlling ITPR3-mediated Ca2+ signals. HERPUD1-deficient cells exhibited increased migratory capacity, which was attenuated by treatment with xestospongin C or BAPTA-AM. Additionally, HERPUD1 deficiency led to reactive oxygen species -dependent activation of paxillin and FAK proteins, which are associated with enhanced cell migration.Our findings highlight the pivotal role of HERPUD1 in regulating mitochondrial function and cell migration by controlling intracellular Ca2+ signals mediated by ITPR3. Understanding the interplay between HERPUD1 and mitochondrial Ca2+ regulation provides insights into potential therapeutic targets for cancer treatment and other pathologies involving altered energy metabolism.
  • No Thumbnail Available
    Item
    Hyperosmotic stress-dependent NFκB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes
    (2006) Eisner, Veronica; Criollo, Alfredo; Quiroga, Clara; Olea-Azar, Claudio; Santibanez, Juan Francisco; Troncoso, Rodrigo; Chiong, Mario; Diaz-Araya, Guillermo; Foncea, Rocio; Lavandero, Sergio
    We have recently shown that hyperosmotic stress activates p65/RelB NF kappa B in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. It remains unexplored how NFKB is regulated in cultured rat cardiomyocytes exposed to hyperosmotic stress. We study here: (a) if hyperosmotic stress triggers reactive oxygen species (ROS) generation and in turn whether they regulate NFKB and (b) if insulin-like growth factor-1 (IGF-1) modulates ROS production and NF kappa B activation in hyperosmotically-stressed cardiomyocytes. The results showed that hyperosmotic stress generated ROS in cultured cardiac myocytes, in particular the hydroxyl and superoxide species, which were inhibited by N-acetylcysteine (NAC). Hyperosmotic stress-induced NFKB activation as determined by I kappa B alpha degradation and NF kappa B DNA binding. NFKB activation and procaspase-3 and -9 fragmentation were prevented by NAC and IGF-1. However, this growth factor did not decrease ROS generation induced by hyperosmotic stress, suggesting that its actions over NFKB and caspase activation may be due to modulation of events downstream of ROS generation. We conclude that hyperosmotic stress induces ROS, which in turn activates NF kappa B and caspases. IGF-1 prevents NFKB activation by a ROS-independent mechanism. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Item
    Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress
    (COMPANY BIOLOGISTS LTD, 2011) Bravo, Roberto; Miguel Vicencio, Jose; Parra, Valentina; Troncoso, Rodrigo; Pablo Munoz, Juan; Bui, Michael; Quiroga, Clara; Rodriguez, Andrea E.; Verdejo, Hugo E.; Ferreira, Jorge; Iglewski, Myriam; Chiong, Mario; Simmen, Thomas; Zorzano, Antonio; Hill, Joseph A.; Rothermel, Beverly A.; Szabadkai, Gyorgy; Lavandero, Sergio
    Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca2+ uptake. Accordingly, uncoupling of the organelles or blocking Ca2+ transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca2+ transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response.
  • No Thumbnail Available
    Item
    Mitochondria, Myocardial Remodeling, and Cardiovascular Disease
    (2012) Verdejo, Hugo E.; del Campo, Andrea; Troncoso, Rodrigo; Gutierrez, Tomas; Toro, Barbra; Quiroga, Clara; Pedrozo, Zully; Pablo Munoz, Juan; Garcia, Lorena; Castro, Pablo F.; Lavandero, Sergio
    The process of muscle remodeling lies at the core of most cardiovascular diseases. Cardiac adaptation to pressure or volume overload is associated with a complex molecular change in cardiomyocytes which leads to anatomic remodeling of the heart muscle. Although adaptive at its beginnings, the sustained cardiac hypertrophic remodeling almost unavoidably ends in progressive muscle dysfunction, heart failure and ultimately death. One of the features of cardiac remodeling is a progressive impairment in mitochondrial function. The heart has the highest oxygen uptake in the human body and accordingly it has a large number of mitochondria, which form a complex network under constant remodeling in order to sustain the high metabolic rate of cardiac cells and serve as Ca2+ buffers acting together with the endoplasmic reticulum (ER). However, this high dependence on mitochondrial metabolism has its costs: when oxygen supply is threatened, high leak of electrons from the electron transport chain leads to oxidative stress and mitochondrial failure. These three aspects of mitochondrial function (Reactive oxygen species signaling, Ca2+ handling and mitochondrial dynamics) are critical for normal muscle homeostasis. In this article, we will review the latest evidence linking mitochondrial morphology and function with the process of myocardial remodeling and cardiovascular disease.
  • No Thumbnail Available
    Item
    Polycystin-1 regulates cardiomyocyte mitophagy
    (2021) Ramirez-Sagredo, Andrea; Quiroga, Clara; Garrido-Moreno, Valeria; Lopez-Crisosto, Camila; Leiva-Navarrete, Sebastian; Norambuena-Soto, Ignacio; Ortiz-Quintero, Jafet; Diaz-Vesga, Magda C.; Perez, William; Hendrickson, Troy; Parra, Valentina; Pedrozo, Zully; Altamirano, Francisco; Chiong, Mario; Lavandero, Sergio
    Polycystin-1 (PC1) is a transmembrane protein found in different cell types, including cardiomyocytes. Alterations in PC1 expression have been linked to mitochondrial damage in renal tubule cells and in patients with autosomal dominant polycystic kidney disease. However, to date, the regulatory role of PC1 in cardiomyocyte mitochondria is not well understood. The analysis of mitochondrial morphology from cardiomyocytes of heterozygous PC1 mice (PDK1(+/-)) using transmission electron microscopy showed that cardiomyocyte mitochondria were smaller with increased mitochondria density and circularity. These parameters were consistent with mitochondrial fission. We knocked-down PC1 in cultured rat cardiomyocytes and human-induced pluripotent stem cells (iPSC)-derived cardiomyocytes to evaluate mitochondrial function and morphology. The results showed that downregulation of PC1 expression results in reduced protein levels of sub-units of the OXPHOS complexes and less functional mitochondria (reduction of mitochondrial membrane potential, mitochondrial respiration, and ATP production). This mitochondrial dysfunction activates the elimination of defective mitochondria by mitophagy, assessed by an increase of autophagosome adapter protein LC3B and the recruitment of the Parkin protein to the mitochondria. siRNA-mediated PC1 knockdown leads to a loss of the connectivity of the mitochondrial network and a greater number of mitochondria per cell, but of smaller sizes, which characterizes mitochondrial fission. PC1 silencing also deregulates the AKT-FoxO1 signaling pathway, which is involved in the regulation of mitochondrial metabolism, mitochondrial morphology, and processes that are part of cell quality control, such as mitophagy. Together, these data provide new insights about the controls that PC1 exerts on mitochondrial morphology and function in cultured cardiomyocytes dependent on the AKT-FoxO1 signaling pathway.
  • No Thumbnail Available
    Item
    Regulation of total LC3 levels by angiotensin II in vascular smooth muscle cells
    (2022) Mondaca-Ruff, David; Quiroga, Clara; Norambuena-Soto, Ignacio; Riquelme, Jaime A.; San Martin, Alejandra; Bustamante, Mario; Lavandero, Sergio; Chiong, Mario
    Hypertension is associated with high circulating angiotensin II (Ang II). We have reported that autophagy regulates Ang II-induced vascular smooth muscle cell (VSMC) hypertrophy, but the mechanism mediating this effect is still unknown. Therefore, we studied how Ang II regulates LC3 levels in VSMCs and whether Bag3, a co-chaperone known to regulate LC3 total levels, may be involved in the effects elicited by Ang II. A7r5 cell line or rat aortic smooth muscle cell (RASMC) primary culture were stimulated with Ang II 100 nM for 24 h and LC3 I, LC3 II and Bag3 protein levels were determined by Western blot. MAP1LC3B mRNA levels were assessed by RT-qPCR. Ang II increased MAP1LC3B mRNA levels and protein levels of LC3 I, LC3 II and total LC3 (LC3 I + LC3 II). Cycloheximide, but not actinomycin D, abolished LC3 II and total LC3 increase elicited by Ang II in RASMCs. In A7r5 cells, cycloheximide prevented the Ang II-mediated increase of LC3 I and total LC3, but not LC3 II. Moreover, Ang II increased Bag3 levels, but this increase was not observed upon co-administration with either losartan 1 mu M (AT1R antagonist) or Y-27632 10 mu M (ROCK inhibitor). These results suggest that Ang II may regulate total LC3 content through transcriptional and translational mechanisms. Moreover, Bag3 is increased in response to Ang II by a AT1R/ROCK signalling pathway. These data provide preliminary evidence suggesting that Ang II may stimulate autophagy in VSMCs by increasing total LC3 content and LC3 processing.
  • No Thumbnail Available
    Item
    Role of HERPUD1 and ERAD activation during differentiation and mineralization of osteoblast in vitro
    (WILEY, 2017) Americo Da Silva, Luan; Diaz, Jheimmy; Bustamante, Mario; Mancilla, Georthan; Oyarzun, Ingrid; Memmel, Mia; Verdejo, Hugo; Quiroga, Clara
  • No Thumbnail Available
    Item
    SNX5 promotes antigen presentation in B cells by dual regulation of actin and lysosomal dynamics
    (2024) Cabrera-Reyes, Fernanda; Contreras-Palacios, Teemly; Ulloa, Romina; Jara-Wilde, Jorge; Caballero, Mia; Quiroga, Clara; Feijoo, Carmen G.; Diaz-Munoz, Jheimmy; Yuseff, Maria-Isabel
    B cells rapidly adapt their endocytic pathway to promote the uptake and processing of extracellular antigens recognized through the B-cell receptor (BCR). The mechanisms coupling changes in endomembrane trafficking to the capacity of B cells to screen for antigens within lymphoid tissues remain unaddressed. We investigated the role of SNX5, a member of the sorting nexin family, which interacts with endocytic membranes to regulate vesicular trafficking and macropinocytosis. Our results show that in steady state, B cells form SNX5-rich protrusions at the plasma membrane, which dissipate upon interaction with soluble antigens, whereas B cells activated with immobilized antigens accumulate SNX5 at the immune synapse where it regulates actin-dependent spreading responses. B cells silenced for SNX5 exhibit enlarged lysosomes, which are not recruited to the synaptic membrane, decreasing their capacity to extract immobilized antigens. Overall, our findings reveal that SNX5 is critical for actin-dependent plasma membrane remodeling in B cells involved in antigen screening and immune synapse formation, as well as endolysosomal trafficking required to promote antigen extraction and presentation.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback