Browsing by Author "Quezada, Ivan M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCounteractive biomass allocation responses to drought and damage in the perennial herb Convolvulus demissus(2010) Quezada, Ivan M.; Gianoli, ErnestoHerbivory and water shortage are key ecological factors affecting plant performance. While plant compensatory responses to herbivory include reallocation of biomass from below-ground to above-ground structures, plant responses to reduced soil moisture involve increased biomass allocation to roots and a reduction in the number and size of leaves. In a greenhouse study we evaluated the effects of experimental drought and leaf damage on biomass allocation in Convolvulus demissus (Convolvulaceae), a perennial herb distributed in central Chile, where it experiences summer drought typical of Mediterranean ecosystems and defoliation by leaf beetles and livestock. The number of leaves and internode length were unaffected by the experimental treatments. The rest of plant traits showed interaction of effects. We detected that drought counteracted some plant responses to damage. Thus, only in the control watering environment was it observed that damaged plants produced more stems, even after correcting for main stem length (index of architecture). In the cases of shoot : root ratio, relative shoot biomass and relative root biomass we found that the damage treatment counteracted plant responses to drought. Thus, while undamaged plants under water shortage showed a significant increase in root relative biomass and a significant reduction in both shoot : root ratio and relative shoot biomass, none of these responses to drought was observed in damaged plants. Total plant biomass increased in response to simulated herbivory, apparently due to greater shoot size, and in response to drought, presumably due to greater root size. However, damaged plants under experimental drought had the same total biomass as control plants. Overall, our results showed counteractive biomass allocation responses to drought and damage in C. demissus. Further research must address the fitness consequences under field conditions of the patterns found. This would be of particular importance because both current and expected climatic trends for central Chile indicate increased aridity.
- ItemCrassulacean acid metabolism photosynthesis in Bromeliaceae: an evolutionary key innovation(2011) Quezada, Ivan M.; Gianoli, ErnestoCrassulacean acid metabolism (CAM) is a photosynthetic pathway that significantly increases water use efficiency in plants. It has been proposed that CAM photosynthesis, which evolved from the ancestral C3 pathway, has played a role in the diversification of some prominent plant groups because it may have allowed them to colonize and successfully spread into arid or semi-arid environments. However, the hypothesis that CAM photosynthesis constitutes an evolutionary key innovation, thereby enhancing diversification rates of the clades possessing it, has not been evaluated quantitatively. We tested whether CAM photosynthesis is a key innovation in the Bromeliaceae, a large and highly diversified plant family that has successfully colonized arid environments. We identified five pairs of sister groups with and without the CAM feature, including 31 genera and over 2000 species. In all five cases, the clades with CAM photosynthesis were more diverse than their C3 counterparts. We provide quantitative evidence that the evolution of CAM photosynthesis is significantly associated with increased diversification in Bromeliaceae and thus constitutes an evolutionary key innovation. We also found preliminary evidence of an association between the CAM pathway and growth habit in bromeliads, with terrestrial species being more likely to show CAM photosynthesis than epiphytic species. To our knowledge, this is the first case of a physiological attribute shown to be a key innovation in plants. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 480-486.