Browsing by Author "Pumo, M. L."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemDark matter line searches with the Cherenkov Telescope Array(2024) Abe, S.; Abhir, J.; Abhishek, A.; Acero, F.; Acharyya, A.; Adam, R.; Aguasca-Cabot, A.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, J.; Alfaro, R.; Alvarez-Crespo, N.; Alves Batista, R.; Amans, J. -P.; Amato, E.; Ambrosi, G.; Angel, L.; Aramo, C.; Arcaro, C.; Arnesen, T. T. H.; Arrabito, L.; Asano, K.; Ascasibar, Y.; Aschersleben, J.; Ashkar, H.; Backes, M.; Baktash, A.; Balazs, C.; Balbo, M.; Baquero Larriva, A.; Martins, V. Barbosa; Barres de Almeida, U.; Barrio, J. A.; Batkovic, I.; Batzofin, R.; Baxter, J.; Becerra Gonzalez, J.; Beck, G.; Benbow, W.; Berge, D.; Bernardini, E.; Bernete, J.; Bernloehr, K.; Berti, A.; Bertucci, B.; Bhattacharjee, P.; Bhattacharyya, S.; Bigongiari, C.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bolmont, J.; Bonnoli, G.; Bonollo, A.; Bordas, P.; Bosnjak, Z.; Bottacini, E.; Bottcher, M.; Bringmann, T.; Bronzini, E.; Brose, R.; Brown, A. M.; Brunelli, G.; Bulgarelli, A.; Bulik, T.; Burelli, I.; Burmistrov, L.; Burton, M.; Buscemi, M.; Bylund, T.; Cailleux, J.; Campoy-Ordaz, A.; Cantlay, B. K.; Capasso, G.; Caproni, A.; Capuzzo-Dolcetta, R.; Caraveo, P.; Caroff, S.; Carosi, A.; Carosi, R.; Carquin, E.; Carrasco, M. -S.; Cassol, F.; Castaldini, L.; Castrejon, N.; Castro-Tirado, A. J.; Cerasole, D.; Cerruti, M.; Chadwick, P. M.; Chaty, S.; Chen, A. W.; Chernyakova, M.; Chiavassa, A.; Chudoba, J.; Chytka, L.; Cicciari, G. M.; Cifuentes, A.; Coimbra Araujo, C. H.; Colapietro, M.; Conforti, V.; Conte, F.; Contreras, J. L.; Costa, A.; Costantini, H.; Cotter, G.; Cristofari, P.; Cuevas, O.; Curtis-Ginsberg, Z.; D'Amico, G.; D'Ammando, F.; Dai, S.; Dalchenko, M.; Dazzi, F.; De Angelis, A.; de Lavergne, M. de Bony; De Caprio, V.; de Gouveia Dal Pino, E. M.; De Lotto, B.; De Lucia, M.; de Menezes, R.; de Naurois, M.; de Souza, V.; del Peral, L.; del Valle, M. V.; Delgado Giler, A. G.; Delgado Mengual, J.; Delgado, C.; Dell'aiera, M.; della Volpe, D.; Depaoli, D.; Di Girolamo, T.; Di Piano, A.; Di Pierro, F.; Di Tria, R.; Di Venere, L.; Diaz, C.; Diebold, S.; Dinesh, A.; Djuvsland, J.; Dominik, R. M.; Prester, D. Dominis; Donini, A.; Dorner, D.; Doerner, J.; Doro, M.; Dournaux, J. -L.; Duangchan, C.; Dubos, C.; Ducci, L.; Dwarkadas, V. V.; Ebr, J.; Eckner, C.; Egberts, K.; Einecke, S.; Elsaesser, D.; Emery, G.; Errando, M.; Escanuela, C.; Escarate, P.; Godoy, M. Escobar; Escudero, J.; Esposito, P.; Ettori, S.; Falceta-Goncalves, D.; Fedorova, E.; Fegan, S.; Feng, Q.; Ferrand, G.; Ferrarotto, F.; Fiandrini, E.; Fiasson, A.; Filipovic, M.; Fioretti, V.; Fiori, M.; Foffano, L.; Font Guiteras, L.; Fontaine, G.; Froese, S.; Fukazawa, Y.; Fukui, Y.; Furniss, A.; Galanti, G.; Galaz, G.; Galelli, C.; Gallozzi, S.; Gammaldi, V.; Garczarczyk, M.; Gasbarra, C.; Gasparrini, D.; Ghalumyan, A.; Gianotti, F.; Giarrusso, M.; Giesbrecht Formiga Paiva, J. G.; Giglietto, N.; Giordano, F.; Giuffrida, R.; Glicenstein, J. -F.; Glombitza, J.; Goldoni, P.; Gonzalez, J. M.; Gonzalez, M. M.; Goulart Coelho, J.; Gradetzke, T.; Granot, J.; Grasso, D.; Grau, R.; Greaux, L.; Green, D.; Green, J. G.; Grolleron, G.; Guedes, L. M. V.; Gueta, O.; Hackfeld, J.; Hadasch, D.; Hamal, P.; Hanlon, W.; Hara, S.; Harvey, V. M.; Hassan, T.; Hayashi, K.; Hess, B.; Heckmann, L.; Heller, M.; Hernandez Cadena, S.; Hervet, O.; Hinton, J.; Hiroshima, N.; Hnatyk, B.; Hnatyk, R.; Hofmann, W.; Holder, J.; Horan, D.; Horvath, P.; Hovatta, T.; Hrabovsky, M.; Hrupec, D.; Iarlori, M.; Inada, T.; Incardona, F.; Inoue, S.; Inoue, Y.; Iocco, F.; Iori, M.; Ishio, K.; Jamrozy, M.; Janecek, P.; Jankowsky, F.; Jean, P.; Jimenez Quiles, J.; Jin, W.; Juramy-Gilles, C.; Jurysek, J.; Kagaya, M.; Kalekin, O.; Karas, V.; Katagiri, H.; Kataoka, J.; Kaufmann, S.; Kazanas, D.; Kerszberg, D.; Kieda, D. B.; Kleiner, T.; Kluge, G.; Kobayashi, Y.; Kohri, K.; Komin, N.; Kornecki, P.; Kosack, K.; Kowal, G.; Kubo, H.; Kushida, J.; La Barbera, A.; La Palombara, N.; Lainez, M.; Lamastra, A.; Lapington, J.; Laporte, P.; Lazarevic, S.; Lazendic-Galloway, J.; Lemoine-Goumard, M.; Lenain, J. -P.; Leone, F.; Leonora, E.; Leto, G.; Lindfors, E.; Linhoff, M.; Liodakis, I.; Lipniacka, A.; Lombardi, S.; Longo, F.; Lopez-Coto, R.; Lopez-Moya, M.; Lopez-Oramas, A.; Loporchio, S.; Lozano Bahilo, J.; Luque-Escamilla, P. L.; Macias, O.; Majumdar, P.; Mallamaci, M.; Malyshev, D.; Mandat, D.; Manico, G.; Mariotti, M.; Marquez, I.; Marquez, P.; Marsella, G.; Marti, J.; Martinez, G. A.; Martinez, M.; Martinez, O.; Marty, C.; Mas-Aguilar, A.; Mastropietro, M.; Mazin, D.; Menchiari, S.; Mestre, E.; Meunier, J. -L.; Meyer, D. M. -A.; Meyer, M.; Miceli, D.; Miceli, M.; Michailidis, M.; Michalowski, J.; Miener, T.; Miranda, J. M.; Mitchell, A.; Mizote, M.; Mizuno, T.; Moderski, R.; Molero, M.; Molfese, C.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende, D.; Morselli, A.; Moulin, E.; Moya Zamanillo, V.; Munari, K.; Murach, T.; Muraczewski, A.; Muraishi, H.; Nakamori, T.; Nayak, A.; Nemmen, R.; Neto, J. P.; Nickel, L.; Niemiec, J.; Nieto, D.; Nievas Rosillo, M.; Nikolajuk, M.; Nikolic, L.; Nishijima, K.; Noda, K.; Nosek, D.; Novotny, V.; Nozaki, S.; Ohishi, M.; Ohtani, Y.; Okumura, A.; Olive, J. -F.; Ong, R. A.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, E.; Orlando, S.; Ostrowski, M.; Otero-Santos, J.; Oya, I.; Pagano, I.; Pagliaro, A.; Palatiello, M.; Panebianco, G.; Paneque, D.; Pantaleo, F. R.; Paredes, J. M.; Parmiggiani, N.; Patricelli, B.; Pe'er, A.; Pech, M.; Pecimotika, M.; Pensec, U.; Peresano, M.; Perez-Romero, J.; Persic, M.; Peters, K. P.; Petruk, O.; Piano, G.; Pierre, E.; Pietropaolo, E.; Pihet, M.; Pinchbeck, L.; Pirola, G.; Pittori, C.; Plard, C.; Podobnik, F.; Pohl, M.; Pollet, V.; Ponti, G.; Prandini, E.; Principe, G.; Priyadarshi, C.; Produit, N.; Prouza, M.; Pueschel, E.; Puehlhofer, G.; Pumo, M. L.; Queiroz, F.; Quirrenbach, A.; Raino, S.; Rando, R.; Razzaque, S.; Regeard, M.; Reimer, A.; Reimer, O.; Reisenegger, A.; Rhode, W.; Ribeiro, D.; Ribo, M.; Ricci, C.; Richtler, T.; Rico, J.; Rieger, F.; Riitano, L.; Rizi, V.; Roache, E.; Fernandez, G. Rodriguez; Rodriguez Frias, M. D.; Rodriguez-Vazquez, J. J.; Romano, P.; Romeo, G.; Rosado, J.; de Leon, A. Rosales; Rowell, G.; Rudak, B.; Ruiter, A. J.; Rulten, C. B.; Sadeh, I.; Saha, L.; Saito, T.; Salzmann, H.; Sanchez-Conde, M.; Sandaker, H.; Sangiorgi, P.; Sano, H.; Santander, M.; Santos-Lima, R.; Sapienza, V.; Saric, T.; Sarkar, A.; Sarkar, S.; Saturni, F. G.; Savarese, S.; Scherer, A.; Schiavone, F.; Schipani, P.; Schleicher, B.; Schovanek, P.; Schubert, J. L.; Schwanke, U.; Seglar Arroyo, M.; Seitenzahl, I. R.; Sergijenko, O.; Servillat, M.; Siegert, T.; Siejkowski, H.; Siqueira, C.; Sliusar, V.; Slowikowska, A.; Sol, H.; Spencer, S. T.; Spiga, D.; Stamerra, A.; Stanic, S.; Starecki, T.; Starling, R.; Stawarz, L.; Steppa, C.; Hatlen, E. Saether; Stolarczyk, T.; Striskovic, J.; Suda, Y.; Swierk, P.; Tajima, H.; Tak, D.; Takahashi, M.; Takeishi, R.; Tavernier, T.; Tejedor, L. A.; Terauchi, K.; Teshima, M.; Testa, V.; Tian, W. W.; Tibaldo, L.; Tibolla, O.; Todero Peixoto, C. J.; Torradeflot, F.; Torres, D. F.; Tosti, G.; Tothill, N.; Toussenel, F.; Tramacere, A.; Travnicek, P.; Tripodo, G.; Trois, A.; Truzzi, S.; Tutone, A.; Vaclavek, L.; Vacula, M.; Vallania, P.; Valles, R.; van Eldik, C.; van Scherpenberg, J.; Vandenbroucke, J.; Vassiliev, V.; Vazquez Acosta, M.; Vecchi, M.; Ventura, S.; Vercellone, S.; Verna, G.; Viana, A.; Viaux, N.; Vigliano, A.; Vignatti, J.; Vigorito, C. F.; Villanueva, J.; Visentin, E.; Vitale, V.; Vodeb, V.; Voisin, V.; Voitsekhovskyi, V.; Vorobiov, S.; Voutsinas, G.; Vovk, I.; Vuillaume, T.; Wagner, S. J.; Walter, R.; White, M.; White, R.; Wierzcholska, A.; Will, M.; Williams, D. A.; Wohlleben, F.; Wolter, A.; Yamamoto, T.; Yang, L.; Yoshida, T.; Yoshikoshi, T.; Zaharijas, G.; Zampieri, L.; Sanchez, R. Zanmar; Zavrtanik, D.; Zavrtanik, M.; Zdziarski, A. A.; Zech, A.; Zhang, W.; Zhdanov, V. I.; Zietara, K.; Zivec, M.; Zuriaga-Puig, J.Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin.
- ItemObservational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv(2020) Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F. E.; Benetti, S.; Bernardini, M. G.; Bhirombhakdi, K.; Botticella, M. T.; Branchesi, M.; Brocato, E.; Bruun, S. H.; Bulla, M.; Campana, S.; Cappellaro, E.; Castro-Tirado, A. J.; Chambers, K. C.; Chaty, S.; Chen, T-W; Ciolfi, R.; Coleiro, A.; Copperwheat, C. M.; Covino, S.; Cutter, R.; D'Ammando, F.; D'Avanzo, P.; De Cesare, G.; D'Elia, V; Della Valle, M.; Denneau, L.; De Pasquale, M.; Dhillon, V. S.; Dyer, M. J.; Elias-Rosa, N.; Evans, P. A.; Eyles-Ferris, R. A. J.; Fiore, A.; Fraser, M.; Fruchter, A. S.; Fynbo, J. P. U.; Galbany, L.; Gall, C.; Galloway, D. K.; Getman, F., I; Ghirlanda, G.; Gillanders, J. H.; Gomboc, A.; Gompertz, B. P.; Gonzalez-Fernandez, C.; Gonzalez-Gaitan, S.; Grado, A.; Greco, G.; Gromadzki, M.; Groot, P. J.; Gutierrez, C. P.; Heikkila, T.; Heintz, K. E.; Hjorth, J.; Hu, Y-D; Huber, M. E.; Inserra, C.; Izzo, L.; Japelj, J.; Jerkstrand, A.; Jin, Z. P.; Jonker, P. G.; Kankare, E.; Kann, D. A.; Kennedy, M.; Kim, S.; Klose, S.; Kool, E. C.; Kotak, R.; Kuncarayakti, H.; Lamb, G. P.; Leloudas, G.; Levan, A. J.; Longo, F.; Lowe, T. B.; Lyman, J. D.; Magnier, E.; Maguire, K.; Maiorano, E.; Mandel, I; Mapelli, M.; Mattila, S.; McBrien, O. R.; Melandri, A.; Michalowski, M. J.; Milvang-Jensen, B.; Moran, S.; Nicastro, L.; Nicholl, M.; Guelbenzu, A. Nicuesa; Nuttal, L.; Oates, S. R.; O'Brien, P. T.; Onori, F.; Palazzi, E.; Patricelli, B.; Perego, A.; Torres, M. A. P.; Perley, D. A.; Pian, E.; Pignata, G.; Piranomonte, S.; Poshyachinda, S.; Possenti, A.; Pumo, M. L.; Quirola-Vasquez, J.; Ragosta, F.; Ramsay, G.; Rau, A.; Rest, A.; Reynolds, T. M.; Rosetti, S. S.; Rossi, A.; Rosswog, S.; Sabha, N. B.; Carracedo, A. Sagues; Salafia, O. S.; Salmon, L.; Salvaterra, R.; Savaglio, S.; Sbordone, L.; Schady, P.; Schipani, P.; Schultz, A. S. B.; Schweyer, T.; Smartt, S. J.; Smith, K. W.; Smith, M.; Sollerman, J.; Srivastav, S.; Stanway, E. R.; Starling, R. L. C.; Steeghs, D.; Stratta, G.; Stubbs, C. W.; Tanvir, N. R.; Testa, V; Thrane, E.; Tonry, J. L.; Turatto, M.; Ulaczyk, K.; van der Horst, A. J.; Vergani, S. D.; Walton, N. A.; Watson, D.; Wiersema, K.; Wiik, K.; Wyrzykowski, L.; Yang, S.; Yi, S-X; Young, D. R.Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
- ItemSensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud(2023) Acharyya, A.; Adam, R.; Aguasca-Cabot, A.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, J.; Aloisio, R.; Alves Batista, R.; Amato, E.; Anguner, E. O.; Aramo, C.; Arcaro, C.; Asano, K.; Aschersleben, J.; Ashkar, H.; Backes, M.; Baktash, A.; Balazs, C.; Balbo, M.; Ballet, J.; Bamba, A.; Baquero Larriva, A.; Martins, V. Barbosa; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Batista, P.; Batkovic, I.; Baxter, J. R.; Becerra Gonzalez, J.; Tjus, J. Becker; Benbow, W.; Bernardini, E.; Bernardos Martin, M. I.; Bernete Medrano, J.; Berti, A.; Bertucci, B.; Beshley, V.; Bhattacharjee, P.; Bhattacharyya, S.; Bigongiari, C.; Biland, A.; Bissaldi, E.; Bocchino, F.; Bordas, P.; Borkowski, J.; Bottacini, E.; Bottcher, M.; Bradascio, F.; Brown, A. M.; Bulgarelli, A.; Burmistrov, L.; Caroff, S.; Carosi, A.; Carquin, E.; Casanova, S.; Cascone, E.; Cassol, F.; Cerruti, M.; Chadwick, P.; Chaty, S.; Chen, A.; Chiavassa, A.; Chytka, L.; Conforti, V.; Cortina, J.; Costa, A.; Costantini, H.; Cotter, G.; Crestan, S.; Cristofari, P.; D'Ammando, F.; Dalchenko, M.; Dazzi, F.; De Angelis, A.; De Caprio, V.; de Gouveia Dal Pino, E. M.; De Martino, D.; de Naurois, M.; de Souza, V.; del Valle, M. V.; Delgado Giler, A. G.; Delgado, C.; della Volpe, D.; Depaoli, D.; Di Girolamo, T.; Di Piano, A.; Di Pierro, F.; Di Tria, R.; Di Venere, L.; Diebold, S.; Doro, M.; Dumora, D.; Dwarkadas, V. V.; Eckner, C.; Egberts, K.; Emery, G.; Escudero, J.; Falceta-Goncalves, D.; Fedorova, E.; Fegan, S.; Feng, Q.; Ferenc, D.; Ferrand, G.; Fiandrini, E.; Filipovic, M.; Fioretti, V.; Foffano, L.; Fontaine, G.; Fukui, Y.; Gaggero, D.; Galanti, G.; Galaz, G.; Gallozzi, S.; Gammaldi, V.; Garczarczyk, M.; Gasbarra, C.; Gasparrini, D.; Ghalumyan, A.; Giarrusso, M.; Giavitto, G.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J. -F.; Goldoni, P.; Goulart Coelho, J.; Granot, J.; Green, D.; Green, J. G.; Grondin, M. -H.; Gueta, O.; Hadasch, D.; Hamal, P.; Hassan, T.; Hayashi, K.; Heller, M.; Hernandez Cadena, S.; Hiroshima, N.; Hnatyk, B.; Hnatyk, R.; Hofmann, W.; Holder, J.; Holler, M.; Horan, D.; Horvath, P.; Hrabovsky, M.; Hutten, M.; Iarlori, M.; Inada, T.; Incardona, F.; Inoue, S.; Iocco, F.; Jamrozy, M.; Jin, W.; Jung-Richardt, I.; Jurysek, J.; Kantzas, D.; Karas, V.; Katagiri, H.; Kerszberg, D.; Knodlseder, J.; Komin, N.; Kornecki, P.; Kosack, K.; Kowal, G.; Kubo, H.; Lamastra, A.; Lapington, J.; Lemoine-Goumard, M.; Lenain, J. -P.; Leone, F.; Leto, G.; Leuschner, F.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez-Coto, R.; Lopez-Oramas, A.; Loporchio, S.; Luque-Escamilla, P. L.; Macias, O.; Majumdar, P.; Mandat, D.; Mangano, S.; Manico, G.; Mariotti, M.; Marquez, P.; Marsella, G.; Marti, J.; Martin, P.; Martinez, M.; Mazin, D.; Menchiari, S.; Meyer, D. M. -A.; Miceli, D.; Miceli, M.; Michalowski, J.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Molero, M.; Molina, E.; Montaruli, T.; Moralejo, A.; Morcuende, D.; Morselli, A.; Moulin, E.; Moya, V.; Mukherjee, R.; Munari, K.; Muraczewski, A.; Nagataki, S.; Nakamori, T.; Nayak, A.; Niemiec, J.; Nievas, M.; Nikolajuk, M.; Nishijima, K.; Noda, K.; Nosek, D.; Novosyadlyj, B.; Nozaki, S.; Ohishi, M.; Ohm, S.; Okumura, A.; Olmi, B.; Ong, R. A.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, E.; Orlando, S.; Ostrowski, M.; Oya, I.; Pagliaro, A.; Palatka, M.; Pantaleo, F. R.; Paoletti, R.; Paredes, J. M.; Parmiggiani, N.; Patricelli, B.; Pech, M.; Pecimotika, M.; Persic, M.; Petruk, O.; Pierre, E.; Pietropaolo, E.; Pirola, G.; Pohl, M.; Prandini, E.; Priyadarshi, C.; Puhlhofer, G.; Pumo, M. L.; Punch, M.; Queiroz, F. S.; Quirrenbach, A.; Raino, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ribo, M.; Richtler, T.; Rico, J.; Rieger, F.; Rigoselli, M.; Rizi, V.; Roache, E.; Fernandez, G. Rodriguez; Romano, P.; Romeo, G.; Rosado, J.; de Leon, A. Rosales; Rudak, B.; Rulten, C.; Sadeh, I.; Saito, T.; Sanchez-Conde, M.; Sano, H.; Santangelo, A.; Santos-Lima, R.; Sarkar, S.; Saturni, F. G.; Scherer, A.; Schovanek, P.; Schussler, F.; Schwanke, U.; Sergijenko, O.; Servillat, M.; Siejkowski, H.; Siqueira, C.; Spencer, S.; Stamerra, A.; Stanic, S.; Steppa, C.; Stolarczyk, T.; Suda, Y.; Tavernier, T.; Teshima, M.; Tibaldo, L.; Torres, D. F.; Tothill, N.; Vacula, M.; Vallage, B.; Vallania, P.; van Eldik, C.; Vazquez Acosta, M.; Vecchi, M.; Ventura, S.; Vercellone, S.; Viana, A.; Vigorito, C. F.; Vink, J.; Vitale, V.; Vodeb, V.; Vorobiov, S.; Vuillaume, T.; Wagner, S. J.; Walter, R.; White, M.; Wierzcholska, A.; Will, M.; Yamazaki, R.; Yang, L.; Yoshikoshi, T.; Zacharias, M.; Zaharijas, G.; Zavrtanik, D.; Zavrtanik, M.; Zdziarski, A. A.; Zhdanov, V. I.; Zietara, K.; Zivec, M.A deep survey of the Large Magellanic Cloud at & SIM;0.1-100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3-2.4 pending a flux increase by a factor of >3-4 over & SIM;2015-2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index & SIM;2.7, but degree-scale 0.1-10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1-10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles.
- ItemSNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events(2018) Tomasella, L.; Cappellaro, E.; Pumo, M. L.; Jerkstrand, A.; Benetti, S.; Elias Rosa, N.; Fraser, M.; Inserra, C.; Pastorello, A.; Bauer, Franz Erik