Browsing by Author "Puebla, Carlos"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- ItemActive acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation(2020) Cisterna, Bruno A.; Vargas, Anibal A.; Puebla, Carlos; Fernandez, Paola; Escamilla, Rosalba; Lagos, Carlos F.; Matus, Maria F.; Vilos, Cristian; Cea, Luis A.; Barnafi, Esteban; Gaete, Hugo; Escobar, Daniel F.; Cardozo, Christopher P.; Saez, Juan C.Denervation of skeletal muscles induces severe muscle atrophy, which is preceded by cellular alterations such as increased plasma membrane permeability, reduced resting membrane potential and accelerated protein catabolism. The factors that induce these changes remain unknown. Conversely, functional recovery following denervation depends on successful reinnervation. Here, we show that activation of nicotinic acetylcholine receptors (nAChRs) by quantal release of acetylcholine (ACh) from motoneurons is sufficient to prevent changes induced by denervation. Using in vitro assays, ACh and non-hydrolysable ACh analogs repressed the expression of connexin43 and connexin45 hemichannels, which promote muscle atrophy. In co-culture studies, connexin43/45 hemichannel knockout or knockdown increased innervation of muscle fibers by dorsal root ganglion neurons. Our results show that ACh released by motoneurons exerts a hitherto unknown function independent of myofiber contraction. nAChRs and connexin hemichannels are potential molecular targets for therapeutic intervention in a variety of pathological conditions with reduced synaptic neuromuscular transmission.
- ItemDexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells(2015) Contador, David; Ezquer, Fernando; Espinosa, Maximiliano; Arango Rodriguez, Martha; Puebla, Carlos; Sobrevía Luarte, Luis Alberto; Conget, Paulette
- ItemFunctional Link Between Adenosine and Insulin: A Hypothesis for Fetoplacental Vascular Endothelial Dysfunction in Gestational Diabetes(BENTHAM SCIENCE PUBL LTD, 2011) Guzman Gutierrez, Enrique; Abarzua, Fernando; Belmar, Cristian; Nien, Jyh K.; Ramirez, Marco A.; Arroyo, Pablo; Salomon, Carlos; Westermeier, Francisco; Puebla, Carlos; Leiva, Andrea; Casanello, Paola; Sobrevia, LuisGestational diabetes mellitus (GDM) is a syndrome compromising the health of the mother and the fetus. Endothelial damage and reduced metabolism of the vasodilator adenosine occur and fetal hyperinsulinemia associated with deficient insulin response and a metabolic rather than mitogenic phenotype is characteristic of this pathology. These phenomena lead to endothelial dysfunction of the fetoplacental unit. Major databases were searched for the relevant literature in the field. Special attention was placed on publications related with diabetes and hormone/metabolic disorders. We aimed to summarize the information regarding insulin sensitivity changes in GDM and the role of adenosine in this phenomenon. Evidence supporting the possibility that fetal endothelial dysfunction involves a functional link between adenosine and insulin signaling in the fetal endothelium from GDM pregnancies is summarized. Since insulin acts via membrane receptors type A (preferentially associated with mitogenic responses) or type B (preferentially associated with metabolic responses), a differential activation of these receptors in this syndrome is proposed.
- ItemGestational Diabetes Reduces Adenosine Transport in Human Placental Microvascular Endothelium, an Effect Reversed by Insulin(PUBLIC LIBRARY SCIENCE, 2012) Salomon, Carlos; Westermeier, Francisco; Puebla, Carlos; Arroyo, Pablo; Guzman Gutierrez, Enrique; Pardo, Fabian; Leiva, Andrea; Casanello, Paola; Sobrevia, LuisGestational diabetes mellitus (GDM) courses with increased fetal plasma adenosine concentration and reduced adenosine transport in placental macrovascular endothelium. Since insulin modulates human equilibrative nucleoside transporters (hENTs) expression/activity, we hypothesize that GDM will alter hENT2-mediated transport in human placental microvascular endothelium (hPMEC), and that insulin will restore GDM to a normal phenotype involving insulin receptors A (IR-A) and B (IR-B). GDM effect on hENTs expression and transport activity, and IR-A/IR-B expression and associated cell signalling cascades (p42/44 mitogen-activated protein kinases (p42/44(mapk)) and Akt) role in hPMEC primary cultures was assayed. GDM associates with elevated umbilical whole and vein, but not arteries blood adenosine, and reduced hENTs adenosine transport and expression. IR-A/IR-B mRNA expression and p42/44(mapk)/Akt ratios ('metabolic phenotype') were lower in GDM. Insulin reversed GDM-reduced hENT2 expression/activity, IR-A/IR-B mRNA expression and p42/44(mapk)/Akt ratios to normal pregnancies ('mitogenic phenotype'). It is suggested that insulin effects required IR-A and IR-B expression leading to differential modulation of signalling pathways restoring GDM-metabolic to a normal-mitogenic like phenotype. Insulin could be acting as protecting factor for placental microvascular endothelial dysfunction in GDM.
- ItemHigh D-Glucose reduces SLC29A1 promoter activity and adenosine transport involving specific protein 1 in human umbilical vein endothelium(WILEY, 2008) Puebla, Carlos; Farias, Marcelo; Gonzalez, Marcelo; Vecchiola, Andrea; Aguayo, Claudio; Krause, Bernardo; Pastor Anglada, Marcal; Casanello, Paola; Sobrevia, LuisHigh D-glucose reduces human equilibrative nucleoside transporter 1 (hENT1)-mediated adenosine uptake involving endothelial nitric oxide synthase (eNOS), mitogen-activated protein (MAP) kinase kinases 1 and 2/MAP kinases p42/44 (MEK/ERKs), and protein kinase C (PKC) activation in human umbilical vein endothelium (HUVEC). Since NO represses SLC29A1 gene (hENT1) promoter activity we studied whether D-glucose-reduced hENT1-adenosine transport results from lower SLC29A1 expression in HUVEC primary cultures. HUVEC incubation (24 h) with high D-glucose (25 mM) reduced hENT1-adenosine transport and pGL3-hENT1(-1114) construct SLC29A1 reporter activity compared with normal D-glucose (5 mM). High D-glucose also reduced pGL3-hENT1(-1114) reporter activity compared with cells transfected with pGL3-hENT1(-795) Construct. N-G-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), PD-98059 (MEK1/2 inhibitor), and/or calphostin C (PKC inhibitor) blocked D-glucose effects. Insulin(1 nM) and phorbol 12-myristate 13-acetate (PMA, 100 nM, PKC activator), but not 4 alpha-phorbol 12,13-didecanoate (4 alpha PDD, 100 nM, PMA less active analogue) reduced hENT1-adenosine transport. L-NAME and PD-98059 blocked insulin effects. L-NAME, PD-98059, and calphostin C increased hENT1 expression without altering protein or mRNA stability. High D-glucose increased Sp1 transcription factor protein abundance and binding to SLC29A1 promoter, phenomena blocked by L-NAME, PD-98059, and calphostin C. Sp1 overexpression reduced SLC29A1 promoter activity in normal D-glucose, an effect reversed by L-NAME and further reduced by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor) in high D-glucose. Thus, reduced hENT1 -mediated adenosine transport in high D-glucose may result from increased Sp1 binding to SLC29A1 promoter down-regulating hENT1 expression. This phenomenon depends on eNOS, MEK/ERKs, and PKC activity, suggesting potential roles for these molecules in hyperglycemia-associated endothelial dysfunction.
- ItemInsulin Restores Gestational Diabetes Mellitus Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium(AMER DIABETES ASSOC, 2011) Westermeier, Francisco; Salomon, Carlos; Gonzalez, Marcelo; Puebla, Carlos; Guzman Gutierrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, LuisOBJECTIVE-To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs).
- ItemNitric oxide reduces SLC29A1 promoter activity and adenosine transport involving transcription factor complex hCHOP-C/EBPα in human umbilical vein endothelial cells from gestational diabetes(2010) Farias, Marcelo; Puebla, Carlos; Westermeier, Francisco; Jo, Miguel J.; Pastor-Anglada, Marcal; Casanello, Paola; Sobrevia, LuisReduced expression of human equilibrative nucleoside transporter 1 (hENT1) results from nitric oxide (NO)-dependent reduced SLC29A1 transcriptional activity in human umbilical vein endothelial cells (HUVECs) from gestational diabetes. As expression of the transcription factor C/EBP homologous protein 10 (hCHOP, which forms heterodimers with C/EBP alpha transcription factor) is activated by NO and induced in diabetes mellitus, we hypothesize that hCHOP plays a role in the gestational diabetes-reduced hENT1 expression in HUVECs.
- ItemNitric oxide reduces adenosine transporter ENT1 gene (SLC29A1) promoter activity in human fetal endotheliurn from gestational diabetes(WILEY, 2006) Farias, Marcelo; Martin, Rody San; Puebla, Carlos; Pearson, Jeremy D.; Casado, Javier F.; Pastor Anglada, Marcal; Casanello, Paola; Sobrevia, LuisHuman umbilical vein endothelial cells (HUVEC) from gestational diabetes exhibit reduced adenosine uptake and increased nitric oxide (NO) synthesis. Adenosine transport via human equilibrative nucleoside transporters 1 (hENT1) is reduced by NO by unknown mechanisms in HUVEC. We examined whether gestational diabetes-reduced adenosine transport results from lower hENT1 gene (SLC29A1) expression. HUVEC from gestational diabetes exhibit reduced SLC29A1 promoter activity when transfected with pGL3-hENT1(-2154) compared with pGL3-hENT1(-1114) constructs, an effect blocked by N-G-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor), but unaltered by S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor). In cells from gestational diabetes transfected with pGL3-hENT1(-2114), L-NAME increased, but SNAP did not alter promoter activity and hENT1 expression. However, in cells from normal pregnancies L-NAME increased, but SNAP reduced promoter activity and hENT1 expression. Adenovirus-silenced eNOS expression increased hENT1 expression and activity in cells from normal or gestational diabetic pregnancies. Thus, reduced adenosine transport may result from downregulation of SLC29A1 expression by NO in HUVEC from gestational diabetes. These findings explain the accumulation of extracellular adenosine detected in cultures of HUVEC from gestational diabetes. In addition, fetal endothelial dysfunction could be involved in the abnormal fetal development and growth seen in gestational diabetes.
- ItemRegulation of Connexin-Based Channels by Fatty Acids(2017) Puebla, Carlos; Retamal, Mauricio; Acuña, Rodrigo; Sáez, Juan Carlos
- ItemRole of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition(2015) Salas, Daniela; Puebla, Carlos; Lampe, Paul D.; Lavandero, Sergio; Saez, Juan C.Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphotylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion. (C) 2015 Elsevier B.V. All rights reserved.