• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Priya, R. Krishna"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Biodegradable Green Composites: Effects of Potassium Permanganate (KMnO4) Treatment on Thermal, Mechanical, and Morphological Behavior of Butea Parviflora (BP) Fibers
    (2023) Abisha, M.; Priya, R. Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Flores, Erick I. Saavedra I.; Parra, Pablo Fernando
    This study emphasizes the importance of utilizing biodegradable material Butea parviflora (BP) fiber for sustainable solutions. BP fiber offers numerous ecological benefits, such as being lightweight, biodegradable, and affordable to recycle. The study examines the effects of potassium permanganate (KMnO4) treatment on BP fiber and analyzes its physical and chemical behavior using various methods, including X-ray Diffraction (XRD) analysis, tensile testing, thermogravimetric analysis, thermal conductivity, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared spectroscopic (FTIR) analysis. The results demonstrate that BP fiber possesses low density (1.40 g/cc) and high cellulose content (59.4%), which fosters compatibility between the matrix and resin. XRD analysis indicates a high crystallinity index (83.47%) and crystallite size (6.4 nm), showcasing exceptional crystalline behavior. Treated fibers exhibit improved tensile strength (198 MPa) and Young's modulus (4.40 GPa) compared to untreated fibers (tensile strength-92 MPa, tensile modulus-2.16 GPa). The Tg-DTA thermograms reveal the fiber's thermal resistance up to 240 degrees C with a kinetic activation energy between 62.80-63.46 KJ/mol. Additionally, the lowered thermal conductivity (K) from Lee's disc experiment suggests that BP fiber could be used in insulation applications. SEM photographic results display effective surface roughness for composite making, and FTIR studies reveal vibrational variations of cellulosic functional groups, which correlates with increased cellulosic behavior. Overall, the study affirms the potential of BP fiber as a reinforcing material for composite-making while emphasizing the importance of utilizing biodegradable materials for sustainability.
  • No Thumbnail Available
    Item
    Enhancing structural, thermal, and mechanical properties of Acacia pennata natural fibers through benzoyl chloride treatment for construction applications
    (2023) Sheeba, K. R. Jaya; Priya, R. Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Flores, Erick Saavedra; Kozlov, Pavel
    In recent years, there has been growing interest in exploring natural fiber reinforced composites as potential alternatives to conventional materials in various structural applications. The aim of this study on Acacia pennata fibers (APFs) and treating them with benzoyl chloride was to explore their potential as reinforcement in construction-related materials. The aim was to investigate the physico-chemical, thermal, and mechanical properties of these fibers to understand their suitability for applications in concrete reinforcement, retrofitting, roofing, and wall panels. By enhancing the understanding of the treated fibers' characteristics, this study contributes to the development of sustainable and high-performance construction materials. The fibers were extracted using both water retting and chemical retting methods. The physico-chemical properties of the fibers were assessed through X-ray diffraction (XRD) analysis, which determined a calculated crystalline index (CI) of 72.14% and a crystalline size of 2.6 nm. Thermo-gravimetric analysis was conducted to evaluate the thermal stability of the APFs, revealing a temperature of 366 degrees C and a maximum degradation temperature of 226.7 degrees C. Mechanical analysis included measurements of the APFs' tensile strength (467.86 MPa), tensile modulus (14.62 GPa), microfibrillar angle (14.79), and elongation at break (3.2%). The findings derived from these analyses suggest that the APFs that underwent treatment exhibit desirable mechanical characteristics, rendering them a viable option for utilization in construction-related materials like reinforcement in concrete, retrofitting, roofing and wall Pannels. This research presents a novel exploration of Acacia pennata fibers (APFs) treated with benzoyl chloride, aiming to establish their potential as reinforcements for construction materials. While natural fiber-reinforced composites have drawn interest, the unique application of APFs in construction and their treatment with benzoyl chloride to enhance properties remain relatively unexplored in the literature. This study fills a significant
  • No Thumbnail Available
    Item
    Investigation on Properties of Raw and Alkali Treated Novel Cellulosic Root Fibres of Zea Mays for Polymeric Composites
    (2023) Kavitha, S. Anne; Priya, R. Krishna; Arunachalam, Krishna Prakash; Avudaiappan, Siva; Maureira-Carsalade, Nelson; Roco-Videla, Angel
    Today, new materials based on natural fibres have been emerging day by day to completely eradicate plastics to favour our environmental nature. In this view, the present work is based on the extraction and characterisation of the novel root fibres of the Zea mays (Zm) plant, grown by the hydroponic method. Both the dried untreated and alkali treated root fibres are investigated using a variety of structural, morphological, thermal, elemental and mechanical tests by subjecting both the samples to p-XRD, FT-IR, SEM-EDAX, TGA-DTA, CHNS and tensile strength analyses. Thermal conductivity of the untreated and treated fibres is found using Lee's disc experiment. From p-XRD analysis, the Crystallinity Index, Percentage Crystallinity and Crystallite size of the samples are found. FT-IR studies clarify the different vibrational groups associated with the fibre samples. SEM images show that the surface roughness increases for the chemically treated samples, such that it may be effectively utilised as reinforcement for polymeric composites. The diameter of the fibre samples is found using SEM analysis. According to the EDAX spectrum, Zm fibres in both their raw and processed forms have high levels of Carbon (C) and Oxygen (O). The TGA-DTA tests revealed that the samples of natural fibre have good thermal characteristics. CHNS studies show that Carbon content is high for these samples, which is the characteristic of many natural fibres. Chemical analysis is used to ascertain the prepared samples' chemical makeup. It reveals that both samples have significant amounts of cellulose. The density of the fibres is found to be in the range 0.3-0.6 g/cc, which is much less than any other natural fibre. Therefore, it can be used in light weight applications. From the tensile strength analysis, physical properties such as Young's modulus and micro-fibril angle are determined. The fibres in the roots exhibit a lower tensile strength. Thus, these fibres can be used in powdered form as reinforcement for natural rubber or epoxy composites. After examining all of its properties, it could be reasonably speculated that Zea mays root fibres can be considered as an efficient reinforcement for various matrices to produce attractive bio-composites.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback