Browsing by Author "Privon, G. C."
Now showing 1 - 20 of 23
Results Per Page
Sort Options
- ItemA 33GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum(2017) Barcos-Munoz, L.; Leroy, A. K.; Evans, A. S.; Condon, J.; Privon, G. C.; Thompson, T. A.; Armus, L.; Diaz-Santos, T.; Mazzarella, J. M.; Meier, D. S.; Momjian, E.; Murphy, E. J.; Ott, J.; Sanders, D. B.; Schinnerer, E.; Stierwalt, S.; Surace, J. A.; Walter, F.We present Very Large Array observations of the 33 GHz radio continuum emission from 22 local ultraluminous and luminous infrared (IR) galaxies (U/LIRGs). These observations have spatial (angular) resolutions of 30-720 pc (0.'' 07-0.'' 67) in a part of the spectrum that is likely to be optically thin. This allows us to estimate the size of the energetically dominant regions. We find half-light radii from 30 pc to 1.7 kpc. The 33 GHz flux density correlates well with the IR emission, and we take these sizes as indicative of the size of the region that produces most of the energy. Combining our 33 GHz sizes with unresolved measurements, we estimate the IR luminosity and star formation rate per area and the molecular gas surface and volume densities. These quantities span a wide range (4 dex) and include some of the highest values measured for any galaxy (e.g., Sigma(33 GHz)(SFR) <= 10(4.1) M-circle dot yr(-1) kpc(-2)) at least 13 sources appear Compton thick (N-H(33 GHz) >= 10(24) cm(-2)). Consistent with previous work, contrasting these data with observations of normal disk galaxies suggests a nonlinear and likely multivalued relation between star formation rate and molecular gas surface density, though this result depends on the adopted CO-to-H-2 conversion factor and the assumption that our 33 GHz sizes apply to the gas. Eleven sources appear to exceed the luminosity surface density predicted for starbursts supported by radiation pressure and supernova feedback; however, we note the need for more detailed observations of the inner disk structure. U/LIRGs with higher surface brightness exhibit stronger [C II] 158 mu m deficits, consistent with the suggestion that high energy densities drive this phenomenon.
- ItemA hard X-ray view of luminous and ultra-luminous infrared galaxies in GOALS - I. AGN obscuration along the merger sequence(2021) Ricci, C.; Privon, G. C.; Pfeifle, R. W.; Armus, L.; Iwasawa, K.; Torres-Albà, N.; Satyapal, S.; Bauer, F. E.; Treister, E.; Ho, L. C.; Aalto, S.; Arévalo, P.; Barcos-Muñoz, L.; Charmandaris, V.; Diaz-Santos, T.; Evans, A. S.; Gao, T.; Inami, H.; Koss, M. J.; Lansbury, G.; Linden, S. T.; Medling, A.; Sanders, D. B.; Song, Y.; Stern, D.; U, V.; Ueda, Y.; Yamada, S.The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT;N-H >= 10(24)cm(-2) ) peaks at at a late merger stage, prior to coalescence, when the nuclei have projected separations (d(sep)) of 0.4-6 kpc. A similar peak is also observed in the median N-H [[(1.6 +/- 0.5) x 10(24) cm(-2)].]. The vast majority (85(-9)(+7) per cent)) of the AGNs in the final merger stages (d(sep) less than or similar to 10 kpc) are heavily obscured (N-H = 10(23) cm(-2)), and the median N-H of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that these objects have very obscured nuclear environments, with the gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity (L2-10 less than or similar to 10(43) erg s(-1)) AGNs in U/LIRGs.
- ItemA Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies(IOP PUBLISHING LTD, 2017) Diaz Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos Munoz, L.; Linden, S. T.; Inami, H.; Larson, L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.We present an analysis of [O I](63), [O III](88), [N II](122), and [C II](158) far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for similar to 240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines ("deficits") of line-to-FIR continuum emission for [N II](122), [O I](63), and [C II](158) as a function of FIR color and infrared luminosity surface density, Sigma(IR). The median electron density of the ionized gas in LIRGs, based on the [N II](122)/[N II](205) ratio, is n(e) = 41 cm(-3). We find that the dispersion in the [C II](158) deficit of LIRGs is attributed to a varying fractional contribution of photodissociation regions (PDRs) to the observed [C II](158) emission, f ([C II](158)(PDR)) = [C II](158)(PDR)/C II](158), which increases from similar to 60% to similar to 95% in the warmest LIRGs. The [O I](63)/[C II](158)(PDR) ratio is tightly correlated with the PDR gas kinetic temperaturein sources where [O I] 63 is not optically thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, n(H), and intensity of the interstellar radiation field, G, in units of G(0) and find G/n(H) ratios of similar to 0.1-50 G(0) cm(3), with ULIRGs populating the upper end of the distribution. There is a relation between G/n(H) and Sigma(IR), showing a critical break at Sigma(IR)* similar or equal to 5 x 10(10) L-circle dot kpc(-2). Below Sigma(IR)*, G/n(H) remains constant, similar or equal to 0.32G(0) cm(3), and variations in Sigma(IR) are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above Sigma(IR)*, G/n(H) increases rapidly with Sigma(IR), signaling a departure from the typical PDR conditions found in normal star-forming galaxies toward more intense/harder radiation fields and compact geometries typical of starbursting sources.
- ItemA Potential Recoiling Supermassive Black Hole, CXO J101527.2+625911(2017) Kim, D. -C.; Yoon, Ilsang; Privon, G. C.; Evans, A. S.; Harvey, D.; Stierwalt, S.; Kim, Ji HoonWe have carried out a systematic search for recoiling supermassive black holes (rSMBH) using the Chandra Source and SDSS Cross-Match Catalog. From the survey, we have detected a potential rSMBH, CXO J101527.2 +625911, at z = 0.3504. The source CXO J101527.2+625911 has a spatially offset (1.26 +/- 0.05 kpc) active SMBH and kinematically offset broad emission lines (175 +/- 25 km s(-1) relative to the systemic velocity). The observed spatial and velocity offsets suggest that this galaxy could be an rSMBH, but we have also considered the possibility of a dual SMBH scenario. The column density toward the galaxy center was found to be Compton thin, but no X-ray source was detected. The non-detection of the X-ray source in the nucleus suggests that either there is no obscured actively accreting SMBH or that there exists an SMBH, but it has a low accretion rate (i.e., a low luminosity AGN (LLAGN)). The possibility of the LLAGN was investigated and found to be unlikely based on the Ha luminosity, radio power, and kinematic arguments. This, along with the null detection of an X-ray source in the nucleus, supports our hypothesis that CXO J101527.2+625911 is an rSMBH. Our GALFIT analysis shows the host galaxy to be a bulge-dominated elliptical. The weak morphological disturbance and small spatial and velocity offsets suggest that CXO J101527.2+625911 could be in the final stage of a merging process and about to turn into a normal elliptical galaxy.
- ItemA Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21(IOP PUBLISHING LTD, 2017) Privon, G. C.; Stierwalt, S.; Patton, D. R.; Besla, G.; Pearson, S.; Putman, M.; Johnson, K. E.; Kallivayalil, N.; Liss, S.Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The Ha emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M-circle dot yr(-1), which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of > 50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.
- ItemAtomic hydrogen bridge fueling NGC 4418 with gas from VV 655(2017) Varenius, E.; Costagliola, F.; Kloeckner, H. -R.; Aalto, S.; Spoon, H.; Marti-Vidal, I.; Conway, J. E.; Privon, G. C.; Konig, S.Context. The galaxy NGC4418 harbours a compact (< 20 pc) core with a very high bolometric luminosity (similar to 10(11) L-circle dot). As most of the galaxy energy output comes from this small region, it is of interest to determine what fuels this intense activity. An interaction with the nearby blue irregular galaxy VV655 has been proposed, where gas acquired by NGC4418 could trigger intense star formation and / or black hole accretion in the centre.
- ItemBASS XXXVII: The Role of Radiative Feedback in the Growth and Obscuration Properties of Nearby Supermassive Black Holes(2022) Ricci, C.; Ananna, T. T.; Temple, M. J.; Urry, C. M.; Koss, M. J.; Trakhtenbrot, B.; Ueda, Y.; Stern, D.; Bauer, F. E.; Treister, E.; Privon, G. C.; Oh, K.; Paltani, S.; Stalevski, M.; Ho, L. C.; Fabian, A. C.; Mushotzky, R.; Chang, C. S.; Ricci, F.; Kakkad, D.; Sartori, L.; Baer, R.; Caglar, T.; Powell, M.; Harrison, F.We study the relation between obscuration and supermassive black hole (SMBH) accretion using a large sample of hard X-ray selected active galactic nuclei (AGNs). We find a strong decrease in the fraction of obscured sources above the Eddington limit for dusty gas (log lambda(Edd) >= -2) confirming earlier results, and consistent with the radiation-regulated unification model. This also explains the difference in the Eddington ratio distribution functions (ERDFs) of type 1 and type 2 AGNs obtained by a recent study. The break in the ERDF of nearby AGNs is at log lambda*(Edd) = -1.34 +/- 0.07. This corresponds to the lambda(Edd) where AGNs transition from having most of their sky covered by obscuring material to being mostly devoid of absorbing material. A similar trend is observed for the luminosity function, which implies that most of the SMBH growth in the local universe happens when the AGN is covered by a large reservoir of gas and dust. These results could be explained with a radiation-regulated growth model, in which AGNs move in the N-H-lambda(Edd) plane during their life cycle. The growth episode starts with the AGN mostly unobscured and accreting at low lambda(Edd). As the SMBH is further fueled, lambda(Edd), N-H and the covering factor increase, leading the AGN to be preferentially observed as obscured. Once lambda(Edd) reaches the Eddington limit for dusty gas, the covering factor and N-H rapidly decrease, leading the AGN to be typically observed as unobscured. As the remaining fuel is depleted, the SMBH goes back into a quiescent phase.
- ItemBASS. XLII. The Relation between the Covering Factor of Dusty Gas and the Eddington Ratio in Nearby Active Galactic NucleiRicci, C.; Ichikawa, K.; Stalevski, M.; Kawamuro, T.; Yamada, S.; Ueda, Y.; Mushotzky, R.; Privon, G. C.; Koss, M. J.; Trakhtenbrot, B.; Fabian, A. C.; Ho, L. C.; Asmus, D.; Bauer, Franz Erik; Chang, C. S.; Gupta, K. K.; Oh, K.; Powell, M.; Pfeifle, R. W.; Rojas, A.; Ricci, F.; Temple, M. J.; Toba, Y.; Tortosa, A.; Treister, Ezequiel; Harrison, F.; Stern, D.; Urry, C. M.Accreting supermassive black holes (SMBHs) located at the centers of galaxies are typically surrounded by large quantities of gas and dust. The structure and evolution of this circumnuclear material can be studied at different wavelengths, from the submillimeter to the X-ray. Recent X-ray studies have shown that the covering factor of the obscuring material tends to decrease with increasing Eddington ratio, likely due to radiative feedback on dusty gas. Here we study a sample of 549 nearby (z less than or similar to 0.1) hard X-ray (14-195 keV) selected nonblazar active galactic nuclei (AGN) and use the ratio between the AGN infrared and bolometric luminosity as a proxy of the covering factor. We find that, in agreement with what has been found by X-ray studies of the same sample, the covering factor decreases with increasing Eddington ratio. We also confirm previous findings that showed that obscured AGN typically have larger covering factors than unobscured sources. Finally, we find that the median covering factors of AGN located in different regions of the column density-Eddington ratio diagram are in good agreement with what would be expected from a radiation-regulated growth of SMBHs.
- ItemBAT AGN Spectroscopic Survey XXVII: scattered X-Ray radiation in obscured active galactic nuclei(2021) Gupta, K. K.; Ricci, C.; Tortosa, A.; Ueda, Y.; Kawamuro, T.; Koss, M.; Trakhtenbrot, B.; Oh, K.; Bauer, F. E.; Ricci, F.; Privon, G. C.; Zappacosta, L.; Stern, D.; Kakkad, D.; Piconcelli, E.; Veilleux, S.; Mushotzky, R.; Caglar, T.; Ichikawa, K.; Elagali, A.; Powell, M. C.; Urry, C. M.; Harrison, F.Accreting supermassive black holes (SMBHs), also known as active galactic nuclei (AGN), are generally surrounded by large amounts of gas and dust. This surrounding material reprocesses the primary X-ray emission produced close to the SMBH and gives rise to several components in the broadband X-ray spectra of AGN, including a power-law possibly associated with Thomson-scattered radiation. In this work, we study the properties of this scattered component for a sample of 386 hard-X-ray-selected, nearby (z similar to 0.03) obscured AGN from the 70-month Swift/BAT catalogue. We investigate how the fraction of Thomson-scattered radiation correlates with different physical properties of AGN, such as line-of-sight column density, X-ray luminosity, black hole mass, and Eddington ratio. We find a significant negative correlation between the scattering fraction and the column density. Based on a large number of spectral simulations, we exclude the possibility that this anticorrelation is due to degeneracies between the parameters. The negative correlation also persists when considering different ranges of luminosity, black hole mass, and Eddington ratio. We discuss how this correlation might be either due to the angle dependence of the Thomson cross-section or to more obscured sources having a higher covering factor of the torus. We also find a positive correlation between the scattering fraction and the ratio of [OIII] lambda 5007 to X-ray luminosity. This result is consistent with previous studies and suggests that the Thomson-scattered component is associated with the narrow-line region.
- ItemDirect evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups(2017) Stierwalt, S.; Liss, S. E.; Johnson, K. E.; Patton, D. R.; Privon, G. C.; Besla, G.; Kallivayalil, N.; Putman, M.The demographics of dwarf galaxy populations have long been in tension with predictions from the Cold Dark Matter (CDM) paradigm. If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark matter subhaloes, the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as satellites of more massive galaxies, and there is observational and theoretical evidence to suggest that these satellites at z=0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment making these satellite groups imperfect probes of CDM in the low mass regime. We have identified one of the clearest examples to date of hierarchical structure formation at low masses: seven isolated, spectroscopically confirmed groups with only dwarf galaxies as members. Each group hosts 3-5 known members, has a baryonic mass of similar to 4.4 x 10 degrees to 2 x 10(10) (M-circle dot and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.
- ItemExcitation Mechanisms for HCN (1-0) and HCO+ (1-0) in Galaxies from the Great Observatories All-sky LIRG Survey.(2015) Privon, G. C.; Treister, Ezequiel; Herrero-Illana, R.; Evans, Aaron S.; Iwasawa, K.; Perez-Torres, M. A.; Armus, Lee; Díaz-Santos, T.; Murphy, E. J.; Stierwalt, S.; Aalto, S.
- ItemGrowing supermassive black holes in the late stages of galaxy mergers are heavily obscured.(2017) Ricci, Claudio; Bauer, Franz Erik; Treister, Ezequiel; Privon, G. C.; Schawinski, K.; Blecha, L.; Arevalo, P.; Armus, Lee; Harrison, F.; Ho, L. C.; Iwasawa, K.; Sanders, David B.; Stern, Daniel
- ItemHidden molecular outflow in the LIRG Zw 049.057(2018) Falstad, N.; Aalto, S.; Mangum, J. G.; Costagliola, F.; Gallagher, J. S.; Gonzalez-Alfonso, E.; Sakamoto, K.; Konig, S.; Muller, S.; Evans, A. S.; Privon, G. C.Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration.
- ItemInvestigating the Evolution of the Dual AGN System ESO 509-IG066.(2017) Kosec, P.; Ricci, Claudio; Treister, Ezequiel; Privon, G. C.; Brightman, M.; Stern, D.; Müller-Sánchez, Francisco; Koss, M.; Oh, K.; Assef T., Roberto; Gandhi, P.
- ItemJoint ALMA/X-ray monitoring of the radio-quiet type 1 active galactic nucleus IC 4329A(2024) Shablovinskaya, E.; Ricci, C.; Chang, C. -s.; Tortosa, A.; del Palacio, S.; Kawamuro, T.; Aalto, S.; Arzoumanian, Z.; Balokovic, M.; Bauer, F. E.; Gendreau, K. C.; Ho, L. C.; Kakkad, D.; Kara, E.; Koss, M. J.; Liu, T.; Loewenstein, M.; Mushotzky, R.; Paltani, S.; Privon, G. C.; Smith, K.; Tombesi, F.; Trakhtenbrot, B.The origin of a compact millimeter (mm, 100-250 GHz) emission in radio-quiet active galactic nuclei (RQ AGN) remains debated. Recent studies propose a connection with self-absorbed synchrotron emission from the accretion disk X-ray corona. We present the first joint ALMA (similar to 100 GHz) and X-ray (NICER/XMM-Newton/Swift; 2-10 keV) observations of the unobscured RQ AGN, IC 4329A (z = 0.016). The time-averaged mm-to-X-ray flux ratio aligns with recently established trends for larger samples, but with a tighter scatter (similar to 0.1 dex) compared to previous studies. However, there is no significant correlation on timescales of less than 20 days. The compact mm emission exhibits a spectral index of -0.23 +/- 0.18, remains unresolved with a 13 pc upper limit, and shows no jet signatures. Notably, the mm flux density varies significantly (by factor of 3) within four days, exceeding the contemporaneous X-ray variability and showing the largest mm variations ever detected in RQ AGN over daily timescales. The high amplitude variability rules out scenarios of heated dust and thermal free-free emission, pointing toward a synchrotron origin for the mm radiation in a source of similar to 1 light day (similar to 120 gravitational radii) size. While the exact source is not yet certain, an X-ray corona scenario emerges as the most plausible compared to a scaled-down jet or outflow-driven shocks.
- ItemKINEMATICALLY IDENTIFIED RECOILING SUPERMASSIVE BLACK HOLE CANDIDATES IN SDSS QSOs WITH z < 0.25(2016) Kim, D. -C.; Evans, A. S.; Stierwalt, S.; Privon, G. C.We have performed a spectral decomposition to search for recoiling supermassive black holes (rSMBHs) in Sloan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with z < 0.25. Out of 1271 QSOs, we have identified 26 rSMBH candidates that are recoiling toward us. The projected recoil velocities range from -76 to -307 km s(-1) with a mean of -149 +/- 58 km s(-1). Most of the rSMBH candidates are hosted by gas-rich luminous infrared galaxies (LIRGs)/ultra-luminous infrared galaxies (ULIRGs), but only 23% of them show signs of tidal features, which suggests that a majority of them are advanced mergers. We find that the black hole masses M-BH of the rSMBH candidates are on average similar to 5 times smaller than those of their stationary counterparts and cause a scatter in the M-BH -sigma(*) relation. The Eddington ratios of all of the rSMBH candidates are larger than 0.1, with a mean of 0.52 +/- 0.27, suggesting that they are actively accreting mass. Velocity shifts in high-excitation coronal lines suggest that the rSMBH candidates are recoiling with an average velocity of about -265 km s(-1). The electron density in the narrow line region of the H II rSMBH candidates is about 1/10 of that in active galactic nucleus (AGN) rSMBH candidates, probably because the AGN in the former was more spatially offset than that in the latter. The estimated spatial offsets between the rSMBH candidate and the center of the host galaxy range from 0."21 to 1."97 and need to be confirmed spatially with high-resolution adaptive optics imaging observations.
- ItemMassive Star Cluster Formation and Destruction in Luminous Infrared Galaxies in GOALS(IOP PUBLISHING LTD, 2017) Linden, S. T.; Evans, A. S.; Rich, J.; Larson, K. L.; Armus, L.; Diaz Santos, T.; Privon, G. C.; Howell, J.; Inami, H.; Kim, D. C.; Chien, L. H.; Vavilkin, T.; Mazzarella, J. M.; Modica, F.; Surace, J. A.; Manning, S.; Abdullah, A.; Blake, A.; Yarber, A.; Lambert, T.We present the results of a Hubble Space Telescope ACS/HRC FUV, ACS/WFC optical study into the cluster populations of a sample of 22 Luminous Infrared Galaxies in the Great Observatories All-Sky LIRG Survey. Through integrated broadband photometry, we have derived ages and masses for a total of 484 star clusters contained within these systems. This allows us to examine the properties of star clusters found in the extreme environments of LIRGs relative to lower luminosity star-forming galaxies in the local universe. We find that by adopting a Bruzual & Charlot simple stellar population model and Salpeter initial mass function, the age distribution of the clusters declines as dN/d tau = tau(-0.9+/-0.3), consistent with the age distribution derived for the Antennae Galaxies, and interpreted as evidence for rapid cluster disruption occurring in the strong tidal fields of merging galaxies. The large number of 10(6) M-circle dot young clusters identified in the sample also suggests that LIRGs are capable of producing more high-mass clusters than what is observed to date in any lower luminosity star-forming galaxy in the local universe. The observed cluster mass distribution of dN/dM = M-1.95+/-0.11 is consistent with the canonical -2 power law used to describe the underlying initial cluster mass function (ICMF) for a wide range of galactic environments. We interpret this as evidence against mass-dependent cluster disruption, which would flatten the observed CMF relative to the underlying ICMF distribution.
- ItemMolecular gas and dust properties of galaxies from the Great Observatories All-sky LIRG Survey(2019) Herrero-Illana, R.; Privon, G. C.; Evans, A. S.; Diaz-Santos, T.; Perez-Torres, M. A.; Alberdi, A.; Iwasawa, K.; Armus, L.; Aalto, S.; Mazzarella, J.; Chu, J.; Sanders, D. B.; Barcos-Munoz, L.; Charmandaris, V; Linden, S. T.; Yoon, I; Frayer, D. T.; Inami, H.; Kim, D-C; Borish, H. J.; Conway, J.; Murphy, E. J.; Song, Y.; Stierwalt, S.; Surace, J.We present IRAM-30 m Telescope (CO)-C-12 and (CO)-C-13 observations of a sample of 55 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe. This sample is a subset of the Great Observatory All-Sky LIRG Survey (GOALS), for which we use ancillary multi-wavelength data to better understand their interstellar medium and star formation properties. Fifty-three (96%) of the galaxies are detected in (CO)-C-12, and 29 (52%) are also detected in (CO)-C-13 above a 3 sigma level. The median full width at zero intensity (FWZI) velocity of the CO line emission is 661 km s(-1), and similar to 54% of the galaxies show a multi-peak CO profile. Herschel photometric data is used to construct the far-IR spectral energy distribution of each galaxy, which are fit with a modified blackbody model that allows us to derive dust temperatures and masses, and infrared luminosities. We make the assumption that the gas-to-dust mass ratio of (U)LIRGs is comparable to local spiral galaxies with a similar stellar mass (i.e., gas/dust of mergers is comparable to their progenitors) to derive a CO-to-H-2 conversion factor of = 1.8(-0.8)(+1.3) M-circle dot (K km s(-1) pc(2))(-1); such a value is comparable to that derived for (U)LIRGs based on dynamical mass arguments. We derive gas depletion times of 400 600 Myr for the (U)LIRGs, compared to the 1.3 Gyr for local spiral galaxies. Finally, we re-examine the relationship between the (CO)-C-12/(CO)-C-13 ratio and dust temperature, confirming a transition to elevated ratios in warmer systems.
- ItemMORPHOLOGY AND MOLECULAR GAS FRACTIONS OF LOCAL LUMINOUS INFRARED GALAXIES AS A FUNCTION OF INFRARED LUMINOSITY AND MERGER STAGE(IOP PUBLISHING LTD, 2016) Larson, K. L.; Sanders, D. B.; Barnes, J. E.; Ishida, C. M.; Evans, A. S.; Mazzarella, J. M.; Kim, D. C.; Privon, G. C.; Mirabel, I. F.; Flewelling, H. A.We present a new, detailed analysis of the morphologies and molecular gas fractions (MGFs) for a complete sample of 65 local luminous infrared galaxies from Great Observatories All-Sky Luminous Infrared Galaxies (LIRG) Survey using high resolution I-band images from The Hubble Space Telescope, the University of Hawaii 2.2 m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with L-IR > 10(11.5)L(circle dot); however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach L-IR > 10(12.0)L(circle dot) until late in the merger process when both disks are near final coalescence. The mean MGF (MGF = M-H2(M*+ M-H2)) for non-interacting and early-stage major merger LIRGs is 18 +/- 2%, which increases to 33 +/- 3%, for intermediate stage major merger LIRGs, consistent with the hypothesis that, during the early-mid stages of major mergers, most of the initial large reservoir of atomic gas (HI) at large galactocentric radii is swept inward where it is converted into molecular gas (H-2).
- ItemNUSTAR Unveils a Heavily Obscured Low-luminosity Active Galactic Nucleus in the Luminous Infrared Galaxy NGC 6286.(2016) Ricci, Claudio; Bauer, Franz Erik; Treister, Ezequiel; Romero-Cañizales, C.; Arevalo, P.; Iwasawa, K.; Privon, G. C.; Sanders, David B.; Schawinski, K.; Stern, D.; Imanishi, M.