Browsing by Author "Preite, Marcelo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAn Improved Synthesis of 3,6-Dihydro-as-indacene(2021) RDibdalli, Yuvaraja; Faundez, Rodrigo; Preite, Marcelo; Molins, Elies; Chavez, Ivonne; Amshumali, Mungalimane K.; Morales-Verdejo, Cesar; Manriquez, Juan M.This contribution describes an updated synthetic route to 3,6-dihydro-as-indacene along with full characterization of all intermediates. The title compound is prepared by Mannich condensation of 2-methylfuran with formaldehyde and dimethylamine hydrochloride, quaternization of the resulting amine with methyl iodide, and conversion into the ammonium hydroxide salt by treatment with silver oxide in water. Subsequent Hoffmann elimination and [6,6]-cycloaddition through pyrolysis produces a furanocyclophane, which after photooxidation, intramolecular cycloaddition, and dehydration with sodium carbonate affords 2,3,6,7-tetrahydro-1,8-dione-as-indacene. Reduction of this diketone gives a mixture of alcohols, which after dehydration under slightly basic or acidic conditions produces 3,6-dihydro-as-indacene. The structure is confirmed by X-ray diffraction, and all intermediates are characterized by means of H-1 and C-13 NMR spectroscopy.
- ItemLTA-mediated synthesis and complete assignment of H-1 and C-13 NMR data of two natural 11-nordrimanes: isonordrimenone and polygonone(WILEY, 2007) Moreno Osorio, Luis; Espinoza, Luis; Cuellar, Mauricio; Preite, MarceloTwo naturally occurring 11-nordrimanes were synthesized, and their H-1 and C-13 NMR spectra were unambiguously assigned in full for the first time. Copyright (c) 2007 John Wiley & Sons, Ltd.
- ItemPhysicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria(2022) Gacitua, Manuel; Carreno, Alexander; Morales-Guevara, Rosaly; Paez-Hernandez, Dayan; Martinez-Araya, Jorge I.; Araya, Eyleen; Preite, Marcelo; Otero, Carolina; Rivera-Zaldivar, Maria Macarena; Silva, Andres; Fuentes, Juan A.Searching for adequate and effective compounds displaying antimicrobial activities, especially against Gram-positive bacteria, is an important research area due to the high hospitalization and mortality rates of these bacterial infections in both the human and veterinary fields. In this work, we explored (E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid (SB-1, harboring an intramolecular hydrogen bond) and (E)-2-((4-nitrobenzilidene)amino)aniline (SB-2), two Schiff bases derivatives. Results demonstrated that SB-1 showed an antibacterial activity determined by the minimal inhibitory concentration (MIC) against Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus (Gram-positive bacteria involved in human and animal diseases such as skin infections, pneumonia, diarrheal syndrome, and urinary tract infections, among others), which was similar to that shown by the classical antibiotic chloramphenicol. By contrast, this compound showed no effect against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, and Salmonella enterica). Furthermore, we provide a comprehensive physicochemical and theoretical characterization of SB-1 (as well as several analyses for SB-2), including elemental analysis, ESMS, H-1 and C-13 NMR (assigned by 1D and 2D techniques), DEPT, UV-Vis, FTIR, and cyclic voltammetry. We also performed a computational study through the DFT theory level, including geometry optimization, TD-DFT, NBO, and global and local reactivity analyses.
- ItemSynthesis, Physicochemical Characterization, and Antimicrobial Evaluation of Halogen-Substituted Non-Metal Pyridine Schiff Bases(2024) Carreno, Alexander; Morales-Guevara, Rosaly; Cepeda-Plaza, Marjorie; Paez-Hernandez, Dayan; Preite, Marcelo; Polanco, Ruben; Barrera, Boris; Fuentes, Ignacio; Marchant, Pedro; Fuentes, Juan A.Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their antimicrobial activity was evaluated against various Gram-negative and Gram-positive bacteria, and it was found that the synthetic pyridine Schiff bases, as well as their precursors, showed no discernible antimicrobial effect on Gram-negative bacteria, including Salmonella Typhi (and mutant derivatives), Salmonella Typhimurium, Escherichia coli, and Morganella morganii. In contrast, a more pronounced biocidal effect against Gram-positive bacteria was found, including Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Among the tested compounds, PSB1 and PSB2 were identified as the most effective against Gram-positive bacteria, with PSB2 showing the most potent biocidal effects. Although the presence of reactive oxygen species (ROS) was noted after treatment with PSB2, the primary mode of action for PSB2 does not appear to involve ROS generation. This conclusion is supported by the observation that antioxidant treatment with vitamin C only partially mitigated bacterial inhibition, indicating an alternative biocidal mechanism.