Browsing by Author "Potin, Philippe"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemAldehyde perception induces specific molecular responses in Laminaria digitata and affects algal consumption by a specialist grazer(2023) Xing, Qikun; Cabioch, Lea; Desrut, Antoine; Le Corguille, Gildas; Rousvoal, Sylvie; Dartevelle, Laurence; Rolland, Elodie; Guitton, Yann; Potin, Philippe; Markov, Gabriel V.; Faugeron, Sylvain; Leblanc, CatherineIn the marine environment, distance signaling based on water-borne cues occurs during interactions between macroalgae and herbivores. In the brown alga Laminaria digitata from North-Atlantic Brittany, oligoalginates elicitation or grazing was shown to induce chemical and transcriptomic regulations, as well as emission of a wide range of volatile aldehydes, but their biological roles as potential defense or warning signals in response to herbivores remain unknown. In this context, bioassays using the limpet Patella pellucida and L. digitata were carried out for determining the effects of algal transient incubation with 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE) and dodecadienal on algal consumption by grazers. Simultaneously, we have developed metabolomic and transcriptomic approaches to study algal molecular responses after treatments of L. digitata with these chemical compounds. The results indicated that, unlike the treatment of the plantlets with 4-HNE or dodecadienal, treatment with 4-HHE decreases algal consumption by herbivores at 100 ng.ml(-1). Moreover, we showed that algal metabolome was significantly modified according to the type of aldehydes, and more specifically the metabolite pathways linked to fatty acid degradation. RNAseq analysis further showed that 4-HHE at 100 ng.ml(-1) can activate the regulation of genes related to oxylipin signaling pathways and specific responses, compared to oligoalginates elicitation. As kelp beds constitute complex ecosystems consisting of habitat and food source for marine herbivores, the algal perception of specific aldehydes leading to targeted molecular regulations could have an important biological role on kelps/grazers interactions.
- ItemHerbivore-induced chemical and molecular responses of the kelps Laminaria digitata and Lessonia spicata(2017) Ritter, Andres; Cabioch, Lea; Brillet-Gueguen, Loraine; Corre, Erwan; Cosse, Audrey; Dartevelle, Laurence; Durufle, Harold; Fasshauer, Carina; Goulitquer, Sophie; Thomas, Francois; Correa, Juan A.; Potin, Philippe; Faugeron, Sylvain; Leblanc, CatherineKelps are founding species of temperate marine ecosystems, living in intertidal coastal areas where they are often challenged by generalist and specialist herbivores. As most sessile organisms, kelps develop defensive strategies to restrain grazing damage and preserve their own fitness during interactions with herbivores. To decipher some inducible defense and signaling mechanisms, we carried out metabolome and transcriptome analyses in two emblematic kelp species, Lessonia spicata from South Pacific coasts and Laminaria digitata from North Atlantic, when challenged with their main specialist herbivores. Mass spectrometry based metabolomics revealed large metabolic changes induced in these two brown algae following challenges with their own specialist herbivores. Targeted metabolic profiling of L. spicata further showed that free fatty acid (FFA) and amino acid (AA) metabolisms were particularly regulated under grazing. An early stress response was illustrated by the accumulation of Sulphur containing amino acids in the first twelve hours of herbivory pressure. At latter time periods (after 24 hours), we observed FFA liberation and eicosanoid oxylipins synthesis likely representing metabolites related to stress. Global transcriptomic analysis identified sets of candidate genes specifically induced by grazing in both kelps. qPCR analysis of the top candidate genes during a 48-hours time course validated the results. Most of these genes were particularly activated by herbivore challenge after 24 hours, suggesting that transcriptional reprogramming could be operated at this time period. We demonstrated the potential utility of these genes as molecular markers for herbivory by measuring their inductions in grazed individuals of field harvested L. digitata and L. spicata. By unravelling the regulation of some metabolites and genes following grazing pressure in two kelps representative of the two hemispheres, this work contributes to provide a set of herbivore-induced chemical and molecular responses in kelp species, showing similar inducible responses upon specialist herbivores in their respective ecosystems.
- ItemProteomic analysis and identification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae)(2010) Contreras, Loretto; Moenne, Alejandra; Gaillard, Fanny; Potin, Philippe; Correa, Juan A.A proteomic analysis combining peptide de novo sequencing and BLAST analysis was used to identify novel proteins involved in copper tolerance in the marine alga Scytosiphon gracilis (Phaeophyceae). Algal material was cultivated in seawater without copper (control) or supplemented with 100 mu g L(-1) for 4 days, and protein extracts were separated by two-dimensional gel electrophoresis (2-DE). From the proteins obtained in the copper treatment, 25 over-expressed, 5 under-expressed and 5 proteins with no changes as compared with the control, were selected for sequencing. Tryptic-peptides obtained from 35 spots were analyzed by capillary liquid chromatography and tandem mass spectroscopy (capLC/MS/MS). and protein identity was determined by BLASTP. We identified 19 over-expressed proteins, including a chloroplast peroxiredoxin, a cytosolic phosphomannomutase, a cytosolic glyceraldehyde-3-phosphate dehydrogenase, 3 ABC transporters, a chaperonine, a subunit of the proteasome and a tRNA synthase, among others. The possible involvement of these over-expressed proteins in buffering oxidative stress and avoiding metal uptake in S. gracilis exposed to copper excess is discussed taking into consideration the information available for other plant models. (C) 2009 Elsevier B.V. All rights reserved.
- ItemSpore release in Acrochaetium sp (Rhodophyta) is bacterially controlled(2007) Weinberger, Florian; Beltran, Jessica; Correa, Juan A.; Lion, Ulrich; Pohnert, Georg; Kumar, Naresh; Steinberg, Peter; Kloareg, Bernard; Potin, PhilippeThe facultative red algal epiphyte Acrochaetium sp. liberated spores preferentially and recruited more successfully in laboratory cultures when its host Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira was present. The same effect was also induced by cell-free medium from G. chilensis, suggesting it contained a molecular signal. Antibiotics prevented spore release in Acrochaetium sp., even when G. chilensis was present, suggesting a prokaryotic origin of the signal. Simultaneous application of N-butyl-homoserine-lactone (BHL) restored the spore-release capacity, which demonstrated that spore release was not directly inhibited by the antibiotics and indicated that bacterially generated N-acyl-homoserine-lactones (AHLs) regulate spore release. An involvement of AHL was further indicated by the fact that two different halofuranone inhibitors of AHL receptors also inhibited spore release when they were applied at relatively low concentrations. Of seven different AHLs tested, only BHL induced the effect. However, BHL was only active at relatively high concentrations (100 mu M), and it was not detected in spore-release-inducing medium of G. chilensis. Another water-soluble AHL or an AHL structure analog is therefore probably the active compound in G. chilensis cultures. The data presented demonstrate that life cycle completion in Acrochaetium sp. strongly depends on bacteria, which are not always present in sufficient numbers on the alga itself. Exogenous bacteria that are associated with G. chilensis or with other potential substrates may therefore trigger timely spore liberation in Acrochaetium sp., provided that the necessary concentration of AHL is reached. This first finding of AHL perception in a red alga confirms that AHL signalling is more widespread among eukaryotes than was thought until recently. However, spore release of a second red alga, Sahlingia subintegra (Rosenv.) Kornmann, was unaffected by AHL, and the reaction observed is therefore not universal.
- ItemThe Ectocarpus genome and the independent evolution of multicellularity in brown algae(2010) Cock, J. Mark; Sterck, Lieven; Rouze, Pierre; Scornet, Delphine; Allen, Andrew E.; Amoutzias, Grigoris; Anthouard, Veronique; Artiguenave, Francois; Aury, Jean-Marc; Badger, Jonathan H.; Beszteri, Bank; Billiau, Kenny; Bonnet, Eric; Bothwell, John H.; Bowler, Chris; Boyen, Catherine; Brownlee, Colin; Carrano, Carl J.; Charrier, Benedicte; Cho, Ga Youn; Coelho, Susana M.; Collen, Jonas; Corre, Erwan; Da Silva, Corinne; Delage, Ludovic; Delaroque, Nicolas; Dittami, Simon M.; Doulbeau, Sylvie; Elias, Marek; Farnham, Garry; Gachon, Claire M. M.; Gschloessl, Bernhard; Heesch, Svenja; Jabbari, Kamel; Jubin, Claire; Kawai, Hiroshi; Kimura, Kei; Kloareg, Bernard; Kuepper, Frithjof C.; Lang, Daniel; Le Bail, Aude; Leblanc, Catherine; Lerouge, Patrice; Lohr, Martin; Lopez, Pascal J.; Martens, Cindy; Maumus, Florian; Michel, Gurvan; Miranda-Saavedra, Diego; Morales, Julia; Moreau, Herve; Motomura, Taizo; Nagasato, Chikako; Napoli, Carolyn A.; Nelson, David R.; Nyvall-Collen, Pi; Peters, Akira F.; Pommier, Cyril; Potin, Philippe; Poulain, Julie; Quesneville, Hadi; Read, Betsy; Rensing, Stefan A.; Ritter, Andres; Rousvoal, Sylvie; Samanta, Manoj; Samson, Gaelle; Schroeder, Declan C.; Segurens, Beatrice; Strittmatter, Martina; Tonon, Thierry; Tregear, James W.; Valentin, Klaus; von Dassow, Peter; Yamagishi, Takahiro; Van de Peer, Yves; Wincker, PatrickBrown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.
- ItemThe Rhodoexplorer Platform for Red Algal Genomics and Whole-Genome Assemblies for Several Gracilaria Species(2023) Lipinska, Agnieszka P.; Krueger-Hadfield, Stacy A.; Godfroy, Olivier; Dittami, Simon M.; Ayres-Ostrock, Ligia; Bonthond, Guido; Brillet-Gueguen, Loraine; Coelho, Susana; Corre, Erwan; Cossard, Guillaume; Destombe, Christophe; Epperlein, Paul; Faugeron, Sylvain; Ficko-Blean, Elizabeth; Beltran, Jessica; Lavaut, Emma; Le Bars, Arthur; Marchi, Fabiana; Mauger, Stephane; Michel, Gurvan; Potin, Philippe; Scornet, Delphine; Sotka, Erik E.; Weinberger, Florian; de Oliveira, Mariana Cabral; Guillemin, Marie-Laure; Plastino, Estela M.; Valero, MyriamMacroalgal (seaweed) genomic resources are generally lacking as compared with other eukaryotic taxa, and this is particularly true in the red algae (Rhodophyta). Understanding red algal genomes is critical to understanding eukaryotic evolution given that red algal genes are spread across eukaryotic lineages from secondary endosymbiosis and red algae diverged early in the Archaeplastids. The Gracilariales is a highly diverse and widely distributed order including species that can serve as ecosystem engineers in intertidal habitats and several notorious introduced species. The genus Gracilaria is cultivated worldwide, in part for its production of agar and other bioactive compounds with downstream pharmaceutical and industrial applications. This genus is also emerging as a model for algal evolutionary ecology. Here, we report new whole-genome assemblies for two species (Gracilaria chilensis and Gracilaria gracilis), a draft genome assembly of Gracilaria caudata, and genome annotation of the previously published Gracilaria vermiculophylla genome. To facilitate accessibility and comparative analysis, we integrated these data in a newly created web-based portal dedicated to red algal genomics (https://rhodoexplorer.sb-roscoff.fr). These genomes will provide a resource for understanding algal biology and, more broadly, eukaryotic evolution.