Browsing by Author "Perez, Yasmin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemNew Benzotriazole and Benzodithiophene-Based Conjugated Terpolymer Bearing a Fluorescein Derivative as Side-Group: In-Ternal Forster Resonance Energy Transfer to Improve Organic Solar Cells(MDPI, 2022) Jessop, Ignacio A.; Cutipa, Josefa; Perez, Yasmin; Saldias, Cesar; Fuentealba, Denis; Tundidor-Camba, Alain; Terraza, Claudio A.; Camarada, Maria B.; Angel, Felipe A.A new benzodithiophene and benzotriazole-based terpolymer bearing a fluorescein derivative as a side group was synthesized and studied for organic solar cell (OSC) applications. This side group was covalently bounded to the backbone through an n-hexyl chain to induce the intramolecular Forster Resonance Energy Transfer (FRET) process and thus improve the photovoltaic performance of the polymeric material. The polymer exhibited good solubility in common organic chlorinated solvents as well as thermal stability (TDT10% > 360 degrees C). Photophysical measurements demonstrated the occurrence of the FRET phenomenon between the lateral group and the terpolymer. The terpolymer exhibited an absorption band centered at 501 nm, an optical bandgap of 2.02 eV, and HOMO and LUMO energy levels of -5.30 eV and -3.28 eV, respectively. A preliminary study on terpolymer-based OSC devices showed a low power-conversion efficiency (PCE) but a higher performance than devices based on an analogous polymer without the fluorescein derivative. These results mean that the design presented here is a promising strategy to improve the performance of polymers used in OSCs.
- ItemSynthesis of dimethyl- and diphenylsilane-based oligo(azine)s: Thermal, optical, electronic, and morphological properties(2022) Sobarzo, Patricio A.; Jessop, Ignacio A.; Perez, Yasmin; Hauyon, Rene A.; Velazquez-Tundidor, Maria V.; Medina, Jean; Gonzalez, Alexis; Garcia, Luis E.; Gonzalez-Henriquez, Carmen M.; Coll, Deysma; Ortiz, Pablo A.; Tundidor-Camba, Alain; Terraza, Claudio A.Four new oligo(azine)s were synthesized from dimethyldiphenylsilane and tetraphenylsilane core-based dialdehydes and hydrazine by high-temperature polycondesation and proposed as materials for optoelectronic applications. The oligo(azine)s were characterized by EA, FT-IR, and NMR. Although most of samples were poorly soluble, TPS-containing PAZ-4 was soluble in aprotic polar solvents. According to SEC and FT-IR studies, the samples were oligomers with up to five repeating units long. TGA showed highly stable samples with TDT10% over 420 degrees C except for PAZ-1 that contains a DMS core along with phenyl units, and thus, the lowest carbon content in the series. From DSC analysis, the substitution of phenyl groups in PAZ-1/3 by biphenyl moieties in PAZ-2/4 allowed to obtain oligo(azine)s with lower T-g values. PAZ-4 showed a UV-A absorption with optical band-gap values of 2.91 and 2.65 eV from UV-vis (solution) and DRS (films), respectively. PL analysis showed a violet emission. PAZ-4 showed resistivity of 29.24 omega cm, similar to wide-band gap materials. Their contact angle measurements showed a critical surface tension of 42.29 dynes/cm, revealing its hydrophobicity. AFM analysis indicated that the PAZ-4 films had homogeneous surfaces. Young's modulus close to 4.46 GPa was established by microindentation for the PAZ-4 thin-films.