Browsing by Author "Palazzi, E."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAccurate classification of 75 counterparts of objects detected in the 54-month Palermo Swift/BAT hard X-ray catalogue(2014) Parisi, P.; Masetti, N.; Rojas, A. F.; Jiménez Bailón, E.; Chavushyan, V.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, Gaspar; Minniti, D.; Morelli, L.; Ubertini, P.; Parisi, P.; Masetti, N.; Rojas, A. F.; Jiménez Bailón, E.; Chavushyan, V.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, Gaspar; Minniti, D.; Morelli, L.; Ubertini, P.
- ItemBL Lacertae identifications in a ROSAT-selected sample of Fermi unidentified objects(2013) Masetti, N.; Sbarufatti, B.; Parisi, P.; Jimenez-Bailon, E.; Chavushyan, V.; Vogt, F. P. A.; Sguera, V.; Stephen, J. B.; Palazzi, E.; Bassani, L.; Bazzano, A.; Fiocchi, M.; Galaz, G.; Landi, R.; Malizia, A.; Minniti, D.; Morelli, L.; Ubertini, P.The optical spectroscopic followup of 27 sources belonging to a sample of 30 high-energy objects selected by positionally cross correlating the first Fermi/LAT Catalog and the ROSAT All-Sky Survey Bright Source Catalog is presented here. It has been found or confirmed that 25 of them are BL Lacertae objects (BL Lacs), while the remaining two are Galactic cataclysmic variables (CVs). This strongly suggests that the sources in the first group are responsible for the GeV emission detected with Fermi, while the two CVs most likely represent spurious associations. We thus find an 80% a posteriori probability that the sources selected by matching GeV and X-ray catalogs belong to the BL Lac class. We also show suggestions that the BL Lacs selected with this approach are probably high-synchrotron-peaked sources and in turn good candidates for the detection of ultra-high-energy (TeV) photons from them.
- ItemIdentifying the host galaxy of the short GRB 100628A(EDP SCIENCES S A, 2015) Guelbenzu, A. Nicuesa; Klose, S.; Palazzi, E.; Greiner, J.; Michalowski, M. J.; Kann, D. A.; Hunt, L. K.; Malesani, D.; Rossi, A.; Savaglio, S.; Schulze, S.; Xu, D.; Afonso, P. M. J.; Elliott, J.; Ferrero, P.; Filgas, R.; Hartmann, D. H.; Kruehler, T.; Knust, F.; Masetti, N.; Olivares E, F.; Rau, A.; Schady, P.; Schmidl, S.; Tanga, M.; Updike, A. C.; Varela, K.We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system is the host, then GRB 100628A was the cosmologically most nearby unambiguous short burst with a measured redshift so far. We used the multi-colour imager GROND at the ESO/La Silla MPG 2.2 in telescope. ESO/VLT spectroscopy, and deep Australia Telescope Compact Array (ATCA) radio-continuum observations together with publicly available Gemini imaging data to study the putative host and the galaxies in the field of GRB 100628A. We confirm that inside the X-ray error circle the most probable host-galaxy candidate is the morphologically disturbed, interacting galaxy system at z = 0.102. The interacting galaxies are connected by a several kpc long tidal stream, which our VLT/FORS2 spectroscopy reveals strong emission lines of [O II] [O III], H alpha and H beta, characteristic for the class of extreme emission-line galaxies and indicative of ongoing star formation. The latter leaves open the possibility that the ORB progenitor was a member of a young stellar population. However, we indentify a second host-galaxy candidate slightly outside the X-ray error circle. It is a radio-bright, luminous elliptical galaxy at a redshift z = 0.311. With a K-band luminosity of 2 x 10(11) L-circle dot this galaxy resembles the probable giant elliptical host of the first well-localized short burst. GRB 050509B. If this is the host, then the progenitor of GRB 100628A was a member of an old stellar population.
- ItemObservational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv(2020) Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F. E.; Benetti, S.; Bernardini, M. G.; Bhirombhakdi, K.; Botticella, M. T.; Branchesi, M.; Brocato, E.; Bruun, S. H.; Bulla, M.; Campana, S.; Cappellaro, E.; Castro-Tirado, A. J.; Chambers, K. C.; Chaty, S.; Chen, T-W; Ciolfi, R.; Coleiro, A.; Copperwheat, C. M.; Covino, S.; Cutter, R.; D'Ammando, F.; D'Avanzo, P.; De Cesare, G.; D'Elia, V; Della Valle, M.; Denneau, L.; De Pasquale, M.; Dhillon, V. S.; Dyer, M. J.; Elias-Rosa, N.; Evans, P. A.; Eyles-Ferris, R. A. J.; Fiore, A.; Fraser, M.; Fruchter, A. S.; Fynbo, J. P. U.; Galbany, L.; Gall, C.; Galloway, D. K.; Getman, F., I; Ghirlanda, G.; Gillanders, J. H.; Gomboc, A.; Gompertz, B. P.; Gonzalez-Fernandez, C.; Gonzalez-Gaitan, S.; Grado, A.; Greco, G.; Gromadzki, M.; Groot, P. J.; Gutierrez, C. P.; Heikkila, T.; Heintz, K. E.; Hjorth, J.; Hu, Y-D; Huber, M. E.; Inserra, C.; Izzo, L.; Japelj, J.; Jerkstrand, A.; Jin, Z. P.; Jonker, P. G.; Kankare, E.; Kann, D. A.; Kennedy, M.; Kim, S.; Klose, S.; Kool, E. C.; Kotak, R.; Kuncarayakti, H.; Lamb, G. P.; Leloudas, G.; Levan, A. J.; Longo, F.; Lowe, T. B.; Lyman, J. D.; Magnier, E.; Maguire, K.; Maiorano, E.; Mandel, I; Mapelli, M.; Mattila, S.; McBrien, O. R.; Melandri, A.; Michalowski, M. J.; Milvang-Jensen, B.; Moran, S.; Nicastro, L.; Nicholl, M.; Guelbenzu, A. Nicuesa; Nuttal, L.; Oates, S. R.; O'Brien, P. T.; Onori, F.; Palazzi, E.; Patricelli, B.; Perego, A.; Torres, M. A. P.; Perley, D. A.; Pian, E.; Pignata, G.; Piranomonte, S.; Poshyachinda, S.; Possenti, A.; Pumo, M. L.; Quirola-Vasquez, J.; Ragosta, F.; Ramsay, G.; Rau, A.; Rest, A.; Reynolds, T. M.; Rosetti, S. S.; Rossi, A.; Rosswog, S.; Sabha, N. B.; Carracedo, A. Sagues; Salafia, O. S.; Salmon, L.; Salvaterra, R.; Savaglio, S.; Sbordone, L.; Schady, P.; Schipani, P.; Schultz, A. S. B.; Schweyer, T.; Smartt, S. J.; Smith, K. W.; Smith, M.; Sollerman, J.; Srivastav, S.; Stanway, E. R.; Starling, R. L. C.; Steeghs, D.; Stratta, G.; Stubbs, C. W.; Tanvir, N. R.; Testa, V; Thrane, E.; Tonry, J. L.; Turatto, M.; Ulaczyk, K.; van der Horst, A. J.; Vergani, S. D.; Walton, N. A.; Watson, D.; Wiersema, K.; Wiik, K.; Wyrzykowski, L.; Yang, S.; Yi, S-X; Young, D. R.Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
- ItemSearching for active galactic nuclei among unidentified INTEGRAL sources(2011) Maiorano, E.; Landi, R.; Stephen, J. B.; Bassani, L.; Masetti, N.; Parisi, P.; Palazzi, E.; Parma, P.; Bird, A. J.; Bazzano, A.; Ubertini, P.; Jimenez-Bailon, E.; Chavushyan, V.; Galaz, G.; Minniti, D.; Morelli, L.We report on a new method to identify active galactic nuclei (AGNs) among unidentified INTEGRAL sources. This method consists of cross-correlating unidentified sources listed in the fourth Imager on Board the INTEGRAL Satellite (IBIS) Survey Catalogue first with infrared and then with radio catalogues and a posteriori verifying, by means of X-ray and optical follow-up observations, the likelihood of these associations. In order to test this method, a sample of eight sources has been extracted from the fourth IBIS catalogue. For seven sources of the sample, we obtained an identification, whereas the last one (IGR J03103+5706) has insufficient information for a clear classification and deserves more in-depth study. We identified three objects (IGR J08190-3835, IGR J17520-6018 and IGR J21441+4640) as AGNs and suggest that three more (IGR J00556+7708, IGRJ17219-1509 and IGR J21268+6203) are likely active galaxies on the basis of their radio spectra, near-infrared photometry and location above the Galaxy plane. One source (IGR J05583-1257) has been classified as a starburst galaxy, but it might have been spuriously associated with the INTEGRAL detection.
- ItemThe agn nature of 11 out of 12 SWIFT/RXTE unidentified sources through optical and X-ray spectroscopy(2007) Landi, R.; Masetti, N.; Morelli, L.; Palazzi, E.; Bassani, L.; Malizia, A.; Bazzano, A.; Bird, A. J.; Dean, A. J.; Galaz, G.; Minniti, D.; Ubertini, P.The Swift Burst Alert Telescope (BAT) is performing a high Galactic latitude survey in the 14-195 keV band at a flux limit of similar to 10(-11) ergs cm(-2) s(-1), leading to the discovery of new high-energy sources, most of which have not yet been properly classified. A similar work has also been performed with the RXTE slew survey, leading to the discovery of 68 sources detected above 8 keV, many of which are still unclassified. Follow-up observations with the Swift X-ray Telescope (XRT) provide, for many of these objects, source localization with a positional accuracy of a few arcseconds, thus allowing the search for optical counterparts to be more efficient and reliable. We present the results of optical/X-ray follow-up studies of 11 Swift BAT detections and one AGN detected in the RXTE Slew Survey, aimed at identifying their longer wavelength counterparts and at assessing their nature. These data allowed, for the first time, the optical classification of eight objects and a distance determination for three of them. For another object, a more refined optical classification than that available in the literature is also provided. For the remaining sources, optical spectroscopy provides a characterization of the source near in time to the X-ray measurement. The sample consists of six Seyfert 2 galaxies, five Seyferts of intermediate type 1.2-1.8, and one object of Galactic nature -an intermediate polar (i.e., magnetic) cataclysmic variable. Out of the 11 AGNs, 8 (similar to 70%), including 2 Seyferts of type 1.2 and 1.5, are absorbed with N-H > 10(22) cm(-2). Up to 3 objects could be Compton thick (i.e., N-H > 1.5 x 10(24) cm(-2)), but only in one case (Swift J0609.1-8636) does all the observational evidence strongly suggest this possibility. The present data demonstrate the capability of coordinated hard X-ray and optical observations to discover absorbed AGNs.
- ItemVLT/X-Shooter emission-line spectroscopy of 96 gamma-ray-burst-selected galaxies at 0.1 < z < 3.6(EDP SCIENCES S A, 2015) Kruehler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang Jensen, B.; Guelbenzu, A. Nicuesa; Palazzi, E.; Pian, E.; Piranomonte, S.; Sanchez Ramirez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long gamma-ray bursts (GRBs) at 0.1 < z < 3.6, the largest sample of GRB host spectra available to date. Most of our GRBs were detected by Swift and 76% are at 0.5 < z < 2.5 with a median z(med) similar to 1.6. Based on Balmer and/or forbidden lines of oxygen, nitrogen, and neon, we measure systemic redshifts, star formation rates (SFR), visual attenuations (A(V)), oxygen abundances (12 + log(O/H)), and emission-line widths (sigma). We study GRB hosts up to z similar to 3.5 and find a strong change in their typical physical properties with redshift. The median SFR of our GRB hosts increases from SFRmed similar to 0.6 M circle dot yr(-1) at z similar to 0.6 up to SFRmed similar to 15 M circle dot yr(-1) at z similar to 2. A higher ratio of [O III]/[O II] at higher redshifts leads to an increasing distance of GRB-selected galaxies to the locus of local galaxies in the Baldwin-Phillips-Terlevich diagram. There is weak evidence for a redshift evolution in A(V) and similar to, with the highest values seen at z similar to 1.5 (A(V)) or z similar to 2 (sigma). Oxygen abundances of the galaxies are distributed between 12 + log(O/H) = 7.9 and 12 + log(O/H) = 9.0 with a median 12 + log(O/H)(med) similar to 8.5. The fraction of GRB-selected galaxies with super-solar metallicities is similar to 20% at z < 1 in the adopted metallicity scale. This is significantly less than the fraction of total star formation in similar galaxies, illustrating that GRBs are scarce in high metallicity environments. At z similar to 3, sensitivity limits us to probing only the most luminous GRB hosts for which we derive metallicities of Z less than or similar to 0.5 Z circle dot. Together with a high incidence of Z similar to 0.5 Z circle dot galaxies at z similar to 1.5, this indicates that a metallicity dependence at low redshift will not be dominant at z similar to 3. Significant correlations exist between the hosts' physical properties. Oxygen abundance, for example, relates to A(V) (12 + log(O/H) proportional to 0.17 A(V)), line width (12 + log(O/H) proportional to sigma(0.6)), and SFR (12 + log(O/H) proportional to SFR0.2). In the last two cases, the normalization of the relations shift to lower metallicities at z > 2 by similar to 0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments.
